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Abstract

We propose a notion of a sub-model for each agent at each state in the Heifetz
et al (2006) model of interactive unawareness. Presuming that each agent is fully
cognizant of his sub-model causes no di¢ culty and fully describes his knowledge
and his beliefs about the knowledge and awareness of others. In addition by relax-
ing some of the conditions that Heifetz et al imposed in their framework we can
accommodate agents who have mistaken beliefs about the awareness levels of other
agents. However, if we require informational consistency and another condition on
knowledge events, then false beliefs are precluded and we return to the original
Heifetz et al model.
Keywords: Interactive Unawareness, Sub-models
JEL Classi�cation: C70; C72; D80; D82

1. Introduction

An innovative framework that allows for unawareness in interactive settings has been
proposed by Heifetz, Meier, and Schipper (2006), hereafter HMS. This approach has
also been taken by Galanis (2013). The modeling technique developed by HMS has
been very successful in capturing interactive unawareness in a compact way. One model
is used to describe the entire situation involving many agents who may have di¤erent
awareness levels, and di¤erent beliefs about the awareness levels of others.

In game theory, it is traditional to presume that the one model is accessible to all
the agents, and this model can be the same one used by the analyst. In the context of
an extensive game, Luce and Rai¤a (1957, p.49) wrote: �Each agent is fully cognizant
of the game in extensive form, that is, he is fully aware of the rules of the game and the
utility functions of each of the agents.� In the context of models more widely used for
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game theoretic analysis, Myerson (1991, p. 64) wrote: �In general, whatever model of
a game we may choose to study, the methods of game theory compel us to assume that
this model must be common knowledge among the agents.�Finally, in the context of the
model of knowledge upon which the HMS framework is based, Aumann (1976, p.1237)
wrote: �Worthy of note is the implicit assumption that the information partitions are
common knowledge.�

For games with unawareness, presuming that the analyst and the agents share the
same model creates some di¢ culty. If an agent has access to the analyst�s model,
conceivably she could use some details of the model to compensate for her unawareness.
On the other hand, imputing some model to other agents is necessary if an agent is
to reason about the awareness and knowledge of those others. The fact that the agent
must model the awareness of others, but does not understand the full model, raises the
possibility of false beliefs about the awareness of others.

In this paper, we propose a notion of a sub-model which does not compromise the
limited awareness levels of the agents1. Given an HMS model, which can be viewed as
the model of an analyst, we assign to each agent, at each state, a sub-model of this
original model. From the analyst�s perspective, the events in the agent�s sub-model are
tightly connected to a subset of those in the full model by a bijection. Intuitively, the
only events in the analyst�s model of which the agent is aware at this state are precisely
those that map to a corresponding event in her sub-model. This allows us to interpret
the events in the full model of which the agent is aware in terms of a sub-model that
is entirely from the agent�s perspective. Hence, the agent can use her sub-model to
reason freely about her awareness as well as the awareness of the other players without
contradicting any limitations of her awareness in the analyst�s model.

HMS imposed a set of conditions on the possibility correspondences of the players.
Among other things, these rule out the possibility that one agent is mistaken about
the awareness level of another. By relaxing some of those conditions we show the
HMS approach can be extended to accommodate mistakes of this type. However, if we
require an additional informational consistency condition in the presence of a property
on knowledge events satis�ed by HMS models, then we are driven back to the full set
of HMS conditions which preclude false beliefs.

One motivating example for wanting to relax the HMS conditions to allow for false
beliefs involves Simon, a prospective graduate student from Australia, who has been
o¤ered admission to Harvard�s PhD program in economics with �nancial aid. In addi-
tion, he is o¤ered a Fulbright scholarship that will pay for his airfare, but requires him
to return to Australia for two years upon the completion of his PhD. One bene�t he

1Halpern-Rego (2012) and Grant-Quiggin (2013) model dynamic unawareness by associating a poten-
tially di¤erent extensive game with each node in some underlying extensive game. While the setting of
the present paper is static, the use of di¤erent extensive games to represent di¤erent levels of awareness
is similar in spirit to our use of sub-models.
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perceives by accepting the Fulbright is as a signal to Michele of his intention to return to
Australia. Simon believes that Michele is aware of this signal. Unbeknownst to Simon,
however, Michele is blissfully unaware that Simon is sending her a signal through his
acceptance of the scholarship. In this sense Simon has a false belief about the awareness
level of Michele. In the sequel we formally model this in a modi�ed HMS framework for
which all the sub-model properties mentioned above, except the informational consis-
tency property, still hold.2 We then show that if we add the informational consistency
property and a property on knowledge events, then our model is ruled out.

The rest of the paper proceeds as follows. In Section 2 we de�ne a generalized notion
of HMS models. We give some basic results including the introduction of two new weak-
enings of the HMS conditions on possibility correspondences and a characterization of a
property of knowledge events that is satis�ed by HMS models. In Section 3 we discuss
sub-models and show a general existence result under some subset of the HMS condi-
tions. We show that our notion of a sub-model satis�es a set of consistency properties.
In Section 4 we introduce the property of informational consistency of sub-models with
the information set received. We show that this, together with the conditions required
for knowledge of an event to be an event implies there can be no false beliefs. Section
5 concludes.

2. Models of Unawareness

We begin with the de�nition of a model of interactive unawareness as introduced and
developed in HMS. A model is a quadruple (L; r;N;�) where:

M1 (Base Spaces): L � (S;�) is:

(M1.1) a complete lattice,3 where:

(M1.2) S is a non-empty collection of non-empty and disjoint base spaces.

HMS interpret each base space S 2 S as encoding everything that can be �expressed�
with the vocabulary of a particular �language�. We write S � S0 for (S; S0) 2 �. HMS
interpret S � S0 to mean that the language corresponding to the base-space S0 is at
least as expressive as the language corresponding to the base-space S. We will also write
S � S0 when S � S0 and S 6= S0. Note that S has a greatest base space (corresponding
to the most expressive language with the richest vocabulary in the model) which we
denote by St and a least base space (corresponding to the least expressive language

2Galanis (2013) relaxed a di¤erent condition in order to describe the mistake of one agent about
another�s knowledge.

3A complete lattice is a pair (S;�) where S is a set partially ordered by �; and each subset B of S
has an in�mum and supremum in S.
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with the most impoverished vocabulary) which we denote by Sb.4 We will denote the
union of the base spaces [fS : S 2 Sg by �. We denote a generic element in � by !.
We write S (!) for the base space containing !, that is, ! 2 S(!).

For any ordered pair of base spaces S � S0 there exists a projection rS0S (�) from S0 to
S, where for each state ! 2 S0, rS0S (!) corresponds to the restriction of the description
of ! to the more limited vocabulary of the less-expressive language associated with S.
Formally, we require:

M2 (Projections): r � (rS0S )S�S0 , where each rS
0
S : S0 ! S is a surjection satisfying:

(Identity map when S = S0) rSS(!) = ! for all ! 2 S and S 2 S;
(Projections Commute) If S � S0 � S00, then rS00S = rS

0
S � rS

00
S0 .

M3 (Agent Set). N = f1; :::; `g is a �nite set of agents.

The awareness and information of each agent is encoded in his possibility correspon-
dence.

M4 (Possibility Correspondences): � = (�i)i2N where for each agent i 2 N ,
�i : � ! 2�n? is called the possibility correspondence of agent i. The value
�i(!) is the possibility set for agent i at state !.

HMS place a number of restrictions on the possibility correspondences. To describe
these, they introduced the following notation. For any ! 2 S0, and any S � S0, we write
!S for rS

0
S (!), that is, !S is the projection of ! from its base space S0 to the (lower)

base space S.

For each base space S 2 S, we de�ne the set of base spaces up the lattice from S by:

g(S) � fS0 2 S : S � S0g (2.1)

De�ne the set of extensions of a subset B � S 2 S over g(S) by:5

B" �
[

S02g(S)
(rS

0
S )

�1(B): (2.2)

The following are the additional conditions that HMS imposed on the possibility corre-
spondences. For all S; S0; S00 2 S, !; !0 2 � and i 2 N :

4A set B has a greatest (least) element under the partial order � i¤ there exists some a 2 B such
that b � a (a � b) for all b 2 B. Note that since � is a partial order, the greatest (least) element is
unique.

5Here, (rS
0

S )
�1(B) = f! 2 S0 : rS0S (!) 2 Bg.
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C (Con�nement): If ! 2 S, then: �i(!) � S0 for some S0 � S;

GR (Generalized Re�exivity): ! 2 �i(!)";

ST (Stationarity): !0 2 �i(!) implies �i(!0) = �i(!);

PPA (Projections Preserve Awareness) If ! 2 S0, ! 2 �i(!) and S � S0, then !S 2
�i(!S);

PPI (Projections Preserve Ignorance): If ! 2 S0 and S � S0, then �i(!)" � �i(!S)";

PPK (Projections Preserve Knowledge): If S � S0 � S00, ! 2 S00 and �i(!) � S0, then
(�i(!))S = �i(!S).6

We refer the reader to the discussion in HMS (p83) on the role each of them play in
guaranteeing the coherence of the knowledge and awareness of individuals as we move
down the lattice of base spaces. Let us just note that we can interpret C (con�nement)
as requiring that all the states an individual considers possible at a given state ! can be
expressed with the same vocabulary, namely the vocabulary of the language available
to the individual at !, which cannot be more expressive than the language in which ! is
expressed. Although in the sequel we shall consider relaxations of the other conditions,
C seems to us to be fundamental for the coherence of a model and its consistency
with the associated knowledge and awareness of the individuals therein.7 So we shall
maintain C throughout.

In the presence of C, we may use S(�i(!)) to denote the base space containing
�i(!). We now present the notions of events, knowledge, awareness, and unawareness
as given in HMS.

De�nition 2.1 (Events). An event (B"; S) consists of a subset B" of � formed from
a subset B of S according to (2.1) and (2.2).

We denote the set of events by E . Let (B"; S) 2 E be an event where B 6= ?. By
the disjointedness of the base spaces assumed in M1.1, the base space S corresponding
to B" is uniquely determined. Hence, we may follow HMS and write B" instead of
(B"; S) whenever B 6= ?. While events de�ned in this way are clearly subsets of �,
as HMS point out, even when (B"; S) is an event, its full complement (�nB"; S) may
not be. To deal with this problem, HMS use the relative complement ((SnB)"; S) of an
event (S;B"), which is an event. We follow their notation of using :B" for the relative
complement (SnB)". Two important properties of events are described in the following
lemma which we state without proof.

6Here, (�i(!))S = f!0S : !0 2 �i(!)g.
7 Indeed the fact that it is designated by HMS (p83) as the �(0)�property for possibility correspon-

dences suggests that they felt it was self-evident that this property should be satis�ed.
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Lemma 2.2 (Properties of Events). LetM = (L; r;N;�) be a model and let (B"; S)
be an event in E . Then:

(a) ! 2 B" if and only if ! 2 S0 for some S0 2 g(S) and !S 2 B;
(b) B" [ :B" = S".

Part (a) characterizes the set of states that are contained in an event. Part (b) states
that the union of an event and its complement do not cover the whole state space �.
This is true since we use only the relative complement :B" = (SnB)" for the event B".
It is what allows HMS to escape the impossibility results of Dekel-Lipman-Rustichini
(1998).

Knowledge in HMS models follows Aumann (1976). For an event (B"; S), the subset
Ki(B

") of 
 is de�ned as:

Ki(B
") � f! 2 � : �i(!) � B"g. (2.3)

The subset Ki(B") is regarded as the set of states in � where i knows the event (B"; S).
Unawareness of an event is de�ned to be:

Ui(B
") � :Ki(B") \ :Ki(:Ki(B"). (2.4)

Finally, awareness of the event corresponds to the subset Ai(B") � :Ui(B"). As was
shown in HMS, awareness can be expressed as:

Ai(B
") = Ki(B

") [Ki(:Ki(B")). (2.5)

Returning to the motivating example from the introduction, denote Simon as agent
1 and Michele as agent 2. The model consists of two base spaces ST = f!1; !2g �
S2 = fag and is depicted in Figure 1. The base space ST represents the modeler�s
view in which !1 corresponds to the situation where Michele is unaware that Simon
is sending her a signal by accepting the scholarship. This is, in fact, the actual state.
However, we have additional states to describe Simon�s mistaken belief about Michele�s
awareness. The state !2 corresponds to the hypothetical situation in which Michele is
aware of the signal. The base space S0 and its unique state a is used to describe the
awareness level of Michele at the actual state !1 where she is not aware of the signal and
is aware only that Simon has accepted the scholarship. The projections from the states
in ST to the single state in S2 are obvious. At states in ST , Simon always perceives his
information as being f!2g, that is, �1 (!1) = �1 (!2) = f!2g. For Michele, suppose
�2 (!1) = fag and �2 (!2) = f!2g. Naturally, both Simon and Michele perceive fag as
their information at a. The possibility correspondences are depicted in Figure 1 by the
�lled arrows for Simon and the un�lled arrows for Michele.
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Unaware Aware

21: ωωTS

aS :0

Simon

Simon

Michele

Michele

Simon, Michele

Figure 1: Simon Violates GR

One can readily check that the model satis�es C, ST, PPA, PPI and PPK. However,
it violates GR since !1 =2 f!2g = �1 (!1)".

The violation of GR, manifests itself in Simon having a false belief, or more precisely,
false knowledge. By Simon having false knowledge, we mean there is an event E for
which K1(E) * E. In our example, the event E = f!2g describes the situation of
Michele being aware of Simon�s signal. The event that Simon knows E is K1(E) =
f!1; !2g. Here, we have a state !1 2 K1(E), but since !1 =2 E, we have K1(E) * E. In
other words, at !1 Simon �knows�that Michele is aware of his signal, when in fact she
is not aware of his signal. In this sense, Simon has false knowledge, which we regard as
a false belief.

In order to accommodate such phenomena, in what follows we will drop GR. For-
mally, we de�ne the property of a model having a false belief as:

FB (False Belief ) Ki(E) * E for some event (E;S) 2 E and some i 2 N .

HMS showed (Proposition 2 (iii)) that GR rules out false beliefs, that is, Ki(E) � E
for every event (E;S) 2 E and each agent i 2 N . FB is actually equivalent to a violation
of GR which is stated as the following lemma.
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Lemma 2.3 (GR versus FB). Fix a modelM satisfying C. The following two state-
ments are equivalent:

1. The modelM satis�es FB.
2. The modelM violates GR.

Proof. As mentioned above, HMS (Proposition 2 (iii)) proved that GR implies the
absence of false beliefs, which is equivalent to (1 ) 2) of this lemma. Though we
assume only C, their proof did not use any of the other conditions, so it applies here.
We prove (2 ) 1). Suppose thatM violates GR, that is, ! =2 �i(!)" for some ! 2 �.
By C, �i(!) � S for some S 2 S, and (�i(!)"; S) 2 E . Then, ! 2 Ki(�i(!)") since
�i(!) � �i(!)", but ! =2 �i(!)": �

HMS note that there is some overlap and redundancy between some of the other
conditions. In particular, PPA is implied by PPK in the presence of C (see remark 3
in HMS, p83). So, we drop PPA. They also showed (see remark 2 in HMS, p83) that
PPI and C imply a condition requiring that as we project from a state down the lattice,
the possibility set of an agent associated with the resulting state resides in a lower base
space than the original one. Formally,

NIA (Non-increasing Awareness) If ! 2 S;�i(!) � S0; S` � S, and �i(!S`) � S00

then S00 � S0.

NIA may be interpreted as requiring that the awareness of an agent does not increase
as we move down the lattice. Hence, the name. In what follows, we drop GR and relax
PPI to NIA. Relaxing PPI, and dropping GR, may come at some cost. One di¢ culty
could be in showing that knowledge of an event (E;S) is itself an S based event. We
formally de�ne this property as:

KE (Knowledge Events) (B"; S) 2 E implies (Ki(B"); S) 2 E .

HMS (Proposition 1) showed that KE holds using C, GR, ST, PPI, and PPK. Board
et al (2011, Proposition 2.3) showed that KE holds for models satisfying only C, PPI,
and PPK. We show that in the presence of C, the property KE is characterized by PPK
and NIA.

Proposition 2.4 (KE is equivalent to PPK and NIA). Fix a modelM satisfying
C. The following two statements are equivalent:

1. The modelM satis�es KE.
2. The modelM satis�es PPK and NIA.
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KE is a fundamental property of HMS models and we will return to it throughout
the paper. It secures knowledge as events. Proposition 2.4 shows that in the presence of
C, this fundamental property entails PPK and NIA. Since the proof of the proposition
is long, we postpone it until the end of this section.

Before it, we show that the HMS characterization of awareness given in their Propo-
sition 3(3), holds in our modi�ed framework. Their characterization is that an agent is
aware of an event if and only if he is aware of the base space containing this event.

Proposition 2.5 (Awareness in HMS models). Fix a modelM satisfying C, ST,
NIA and PPK, and let (B"; S) be an event. Then, for each agent i 2 N : Ai(B

") =
Ki(S

").

Proof. To see Ai(B") � Ki(S
"), suppose ! 2 Ai(B

"). By (2.5), ! 2 Ki(B
") [

Ki(:Ki(B")). If ! 2 Ki(B"), then, by (2.3), �i(!) � B". By C, �i(!) � S0 for some
S0 2 S. Since B" is based on S, it follows that S0 2 g(S). Hence, �i(!) � S", which by
(2.3) implies ! 2 Ki(S").

If ! 2 Ki(:Ki(B")), then �i(!) � :Ki(B"). By Proposition 2.4, :Ki(B") is based
on S. So again, by C, �i(!) � S0 for some S0 2 S, and since :Ki(B") is based on S,
we have S0 2 g(S). Hence, �i(!) � S", which by (2.3) implies ! 2 Ki(S").

Now, let�s see that Ki(S") � Ai(B
"). Suppose that ! 2 Ki(S"), i.e., �i(!) � S".

By C, ! 2 S". By Proposition 2.4, Ki(B") and :Ki(B") are both S based events. By
Lemma 2.2 (b), ! 2 Ki(B") [ :Ki(B"). If ! 2 Ki(B"), then by (2.5), ! 2 Ai(B").
If ! 2 :Ki(B"), then there is some !0 2 �i(!) such that !0 =2 B". By S, for each
!00 2 �i(!), �i(!00) = �i(!). Hence, !0 2 �i(!00) for each !00 2 �i(!). This implies
that for each !00 2 �i(!), �i(!00) * B", i.e., �i(!) � :Ki(B"). By (2.3) and (2.5),
! 2 Ki:Ki(B") � Ai(B"). �

We complete this section with a proof of Proposition 2.4.

Proof of Proposition 2.4. (2 ) 1): Let (B"; S) 2 E . Then, B � S, and as such,
(f!0 2 S : �i(!0) � Bg"; S) 2 E . We will show that Ki(B") = f!0 2 S : �i(!0) � Bg".

First, we show that Ki(B") � f!0 2 S : �i(!0) � Bg". Suppose ! 2 Ki(B"). Then
! 2 S00 for some S00 2 S, and by (2.3), �i(!) � B". By C, �i(!) � S0 for some S0 2 S
and S0 � S00. Applying Lemma 2.2 (a) (only-if part) to each !̂ 2 �i(!), we obtain from
�i(!) � B" that S � S0 and (�i(!))S � B. Using transitivity of � in M1.1, we now
have S � S0 � S00, ! 2 S00 and �i(!) � S0.

It follows by PPK that �i(!S) = (�i(!))S . Since (�i(!))S � B, we have �i(!S) �
B, a fortiori, !S 2 f!0 2 S : �i(!0) � Bg. Since S � S00, it follows by Lemma 2.2 (a)
(if part), that ! 2 f!0 2 S : �i(!0) � Bg".

Next, we show that f!0 2 S : �i(!0) � Bg" � Ki(B"). Let ! 2 f!0 2 S : �i(!0) �
Bg". By Lemma 2.2 (a) (only-if part), ! 2 S0 for some S0 2 S with S � S0 and
�i(!S) � B � S. By C, �i(!) � S00 for some S00 � S0. By NIA, S � S00
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Now, we have S � S00 � S0, ! 2 S0 and �i(!) � S00. It follows by PPK that
(�i(!))S = �i(!S). Since �i(!S) � B, we have (�i(!))S � B. Since S � S00 and
�i(!) � S00, we can apply Lemma 2.2 (a) (if-part) to each !̂ 2 �i(!), to obtain �i(!) �
B". Hence, ! 2 Ki(B").

(1 ) 2): We prove the contrapositive, that is, if PPK or NIA fails, then KE fails.
Observe that PPK can be broken into two conditions:

PPK� If S � S0 � S00, ! 2 S00 and �i(!) � S0, the (�i(!))S � �i(!S).

PPK� If S � S0 � S00, ! 2 S00 and �i(!) � S0, then (�i(!))S � �i(!S).

We break up the proof into three cases: Case 1: M violates PPK�; Case 2: M
satis�es PPK�, but violates PPK�; Case 3: M satis�es PPK, but violates NIA. For
each case, we will construct an event (E;S) 2 E and show that (Ki(E); S) =2 E .

Case 1: M violates PPK�.

In this case, we have S � S0 � S00, ! 2 S00 and �i(!) � S0, but �i(!S) * (�i(!))S .
Consider the event (E;S) = (�i(!))

"
S ; S) 2 E . We will show that (Ki((�i(!))

"
S); S) =2 E .

Suppose, on the contrary, that (Ki((�i(!))
"
S); S) 2 E . Then, there must be some set

B, such that B � S, and B" = Ki((�i(!))"S). Since �i(!) � (�i(!))
"
S , it follows that

! 2 Ki((�i(!))"S) = B". By Lemma 2.2 (a), !S 2 B � B" = Ki((�i(!))
"
S). Since

�i(!S) * (�i(!))S , it follows by C that !S =2 Ki((�i(!))"S), which is a contradiction.
Hence, we conclude that (Ki((�i(!))

"
S); S) =2 E .

Case 2 M satis�es PPK�, but violates PPK�.

In this case, we have S � S0 � S00, ! 2 S00 and �i(!) � S0, but (�i(!))S * �i(!S).
Consider the event (E;S) = (�i(!S)

"; S) 2 E , which is an event since M satis�es
PPK�. We will show that (Ki(�i(!S)"); S) =2 E . Suppose, on the contrary, that
(Ki(�i(!S)

"); S) 2 E . Then, there must be some set B � S, and B" = Ki(�i(!S)
").

Since �i(!S) � �i(!S)
", !S 2 Ki(�i(!S)") = f!̂ 2 � : �i(!̂) � �i(!S)

"g. Since, by
assumption, B" = Ki(�i(!S)

"), it follows by Lemma 2.2 (a) that ! 2 B". However,
since (�i(!))S * �i(!S), ! =2 Ki(�i(!S)

"), a contradiction to B" = Ki(�i(!S)
").

Hence, we conclude that(Ki(�i(!S)"); S) =2 E .

Case 3 M satis�es PPK, but violates NIA.

In this case we have ! 2 S;�i(!) � S0; S` � S, and �i(!S`) � S00 but S00 � S0.
Consider the event (E;S00) = (�i(!S`)

"; S00) 2 E , and suppose that there is some set
B � S00, and B" = Ki(�i(!S`)"). Since �i(!S`) � �i(!S`)", !S` 2 Ki(�i(!S`)") = B".
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By Lemma 2.2 (a), we �nd that ! 2 B". However, since �i(!) � S0 and S00 � S0,
�i(!) * �i(!S`)". Hence, ! =2 Ki((�i(!S)"), a contradiction. Hence, we conclude that
(Ki(�i(!S)

"); S) =2 E . �

3. Sub-models

Recall the discussion in the introduction about the di¢ culty of presuming unaware
agents are fully cognizant of the model. One of our principal aims is to de�ne a sub-
model for each agent which is consistent with the original model, is itself a model, and
does not undermine the unawareness of that agent given his information. In this section
we introduce a well de�ned notion of a sub-model of an agent at a state and show that
it satis�es the following desiderata.

P1 The sub-model is a model.

P2 The sub-model preserves the events from the original model up to the agent�s
awareness.

P3 The sub-model preserves knowledge from the original model up to the agent�s
awareness.

P4 The agent is aware of every event contained in the sub-model.

Property P1 states that the sub-model should inherit the structural properties re-
quired for a full model. Properties P2 and P3 may be viewed as a type of consistency
between the full model at that state and the agent�s sub-model at that state in terms
of events and knowledge. They require that the events and knowledge in the sub-model
of the agent are consistent with those of the full model up to his awareness. Property
P4 requires that an agent�s sub-model never has contents that would compromise his
awareness.

Let M = (L; r;N;�) be an HMS model. We de�ne the sub-model of agent i 2 N
at ! 2 � as follows.

De�nition 3.1. The sub-modelMi;! = (Li;!; ri;!; N i;!;�i;!) of agent i 2 N is de�ned
by:

R1. (Base Spaces) Li;! � (Si;!;�i;!) where:

(i) Si;! � fS0 2 S : S0 � S(�i(!))g;
(ii) �i;! � � \(Si;! � Si;!);
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R2. (Projections): ri;! � (rS0S )S �i;!S0 ;

R3. (Agent Set) N i;! � N ;

R4. (Possibility Correspondences): �i;! = (�i;!j )j2N where for each agent j 2 N ,

�i;!j (!
0) � �j(!0) for all !0 2 �i;! � [fS : S 2 Si;!g.

As mentioned in Section 2.2, we will never drop C in this paper. Hence, S(�i(!))
and the sub-model Mi;! is well de�ned by R1 to R4 for all i 2 N and ! 2 �. We use
�i;!, gi;!(S), "

i;!
, and E i;! to denote, respectively, the union of base spaces, the base

spaces at least as expressive as S, the extensions over more expressive base spaces, and
the set of events inMi;!. Observe that by R1 - R4, the following holds:

B"
i;!
= B" \ �i;! (3.1)

The next proposition addresses P1 by demonstrating that if we start with a model that
satis�es C and possibly other properties, then each sub-model is itself a model inheriting
the same properties as the original model.

Proposition 3.2 (Sub-models are models). Fix a modelM satisfying C and some
set of conditions P � {GR, ST, PPA, PPI, PPK, NIA}. Then, for any agent i 2 N and
any state ! 2 �, the sub-modelMi;! de�ned in R1 to R4 is a model satisfying C and
every condition in P .

Proof. First, we show thatMi;! satis�es M1. It follows by C and M1.2 onM that M1.2
holds for Li;! � (Si;!;�i;!). M1.1, namely completeness of Li;! � (Si;!;�i;!) follows
from completeness of L � (S;�) and the de�nition of Si;! as a down-set in R1.(i).
Speci�cally, let R � Si;!. Then, S(!) is an upper bound for Si;!. By completeness
of L � (S;�) the set R has a supremum sup(R) 2 S and a in�mum inf(R) 2 S. By
the de�nition of supremum, sup(R) � S(!), and thus sup(R) is the supremum of R in
Si;!. Similarly, by the de�nition of in�mum, inf(R) � S(!), and as such inf(R) is the
in�mum of R in Si;!. M2, M3 and C as well as the conditions in P are inherited from
M by the speci�cations of R1 to R4. �

Here, the essential condition on the possibility correspondence for a sub-model to
be a model is C. The other conditions are not relevant, but are inherited. The lattice
structure of the original model is instrumental in ensuring that sub-models are models.

We next show how the events in a sub-model are connected to events in the original
model thus addressing P2, P3, and P4. To see this connection, we denote the set of
events of which individual i is aware at ! in the original model by EAi;! � f(B"; S) 2
E : ! 2 Ai(B")g. As we shall see, the events of which he is aware correspond to the
events in his sub-model.
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Proposition 3.3 (Consistency of sub-models). Fix a modelM satisfying C. Then
for every agent i 2 N and at each state ! 2 � the sub-model Mi;! de�ned by R1-R4
satis�es the following:

(a) (preservation of events) The function f : EAi;! ! E i;! de�ned by f(B"; S) =
(B"

i;!
; S) is a bijection.

(b) (preservation of knowledge) If in additionM satis�es NIA and PPK, then: Ki;!
j (B"

i;!
) =

Kj(B
") \ �i;! for each j 2 N and each event (B"

i;!
; S) 2 E i;!.

(c) (full awareness) If in addition to the properties that hold in (b), M satis�es ST
then: �i(!) � Ai;!i (B"

i;!
) for each event (B"

i;!
; S) 2 E i;!.

Proof (a) By C onM and Proposition 3.2, the sub-modelMi;! is well de�ned. First, we
show that the function f is an injection. Suppose (B"; S) and (C"; S0) are two distinct
events in EAi;!. Then, either B" 6= C", or S 6= S0. In either case, (B"

i;!
; S) is distinct

from (C"
i;!
; S0). Now, let�s see that f is a surjection. Let (B"

i;!
; S) 2 E i;!. Then

S 2 Si;!, (B"; S) 2 E and f(B"; S) = (B"i;! ; S). We need to show that (B"; S) 2 EAi;!,
which is equivalent to showing that ! 2 Ai(B"). Let S0 denote the base space containing
�i(!). Since S 2 Si;! it follows from R1, that S � S0. Hence, �i(!) � S0 2 S". By
(2.3), ! 2 Ki(S").

(b) By C, NIA and PPK onM, we can use Proposition 2.4 and Proposition 3.2 to
deduce that knowledge events are well de�ned in M and Mi;!. Let !0 2 Ki;!

j (B"
i;!
).

Then !0 2 �i;! � � and �j(!0) � B"
i;! � B". Hence, !0 2 Kj(B") \ �i;!. Conversely,

suppose that !0 2 Kj(B") \ �i;!. Then, �j(!0) � B" and !0 2 �i;!. By C, �j(!0) �
�i;!. Since B"

i;!
= B" \ �i;!, we have �j(!0) � B"

i;!
. By (2.3), !0 2 Ki;!

j (B"
i;!
).

(c) By C, ST, NIA, and PPK onM, we can use Proposition 3.2 to deduce thatMi;!

also satis�es C, ST, NIA, and PPK. Thus we can apply Proposition 2.5 together with
part (b) of this proposition, to conclude that Ai;!i (B

"i;!) = Ki;!
i (S"

i;!
). Let S0 denote

the base space containing �i(!). Then, S0 � S"
i;!
. By C, ST and R4, �i(!0) � S0 for

each !0 2 �i(!). Hence, �i(!) � S"
i;!
. By (2.3), �i(!) � Ai;!i (B"

i;!
) = Ki;!

i (S"
i;!
). �

Part (a) shows that the events of which agent i is aware in M at ! correspond
neatly to the events in his sub-model Mi;! and so our model satis�es P2. Part (b)
shows that knowledge from the original model is preserved in the sub-model, that is P3
holds. Finally, part (c) applies to property P4. It states that the agent is fully aware
of all events in his sub-modelMi;! when we take his local information to be �i(!). By
property ST, he perceives the same set of possibilities at each state !0 2 �i(!). Since
the base space containing �i(!) is the top of his sub-model, the events in his sub-model
consist only of states that do not exceed his awareness level.
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In light of these results, we are able to presume that each agent is fully cognizant
of his sub-model without undermining his unawareness. It is worth mentioning that
part (c) of this theorem states only that agent i is not unaware of any event in his sub-
model. It does not, however, prevent another agent j from being unaware of some event
contained in i�s sub-model. It also allows i to presume he would have been unaware,
had some state outside his possibility set �i(!) occurred.

In our analysis, we have not used GR, and thus we can use the motivating example to
discuss the results of this section. At the state !1, where Michele is not aware of Simon�s
signal, the only event of which she is aware in the grand model is � = fa; !1; !2g.
Although one might be tempted to interpret this as implying she is aware of the states
!1 and !2 that are contained in �, this is simply not correct. However, her sub-model
at !1 is one containing just a single base space S0 = fag. So adopting our approach,
one can interpret her awareness in the grand model of the event � as corresponding to
her awareness of the event �2;!1 = fag in her sub-model.

Simon�s sub-model at !1 is the entire model described in Figure 1. Here, he mistak-
enly believes Michele has access to the entire model as well, since he thinks !2 is the only
possible state, and at this state Michele�s sub-model would be the entire model. Here
we see mistaken beliefs about the other�s awareness in action in the HMS framework.

4. Informational Consistency

As we have seen in the previous section, the consistency properties P1 to P4 allow us
to interpret the events in the full model in terms of events in an agent�s sub-model.
This was done in a modi�ed HMS framework that violates GR allowing us to capture
mistaken beliefs about awareness. In this section, we consider how an agent could use his
possibility set �i(!) to check the consistency with his sub-modelMi;!. The potential
for the agent to conduct such a consistency check provides our motivation for adding a
�fth desideratum to the list from section 3.

P5 The sub-model is informationally consistent with that agent�s possibility set at that
state.

Property P5 ensures that the agent does not �nd any discrepancy between his sub-
model and his possibility set. We formalize this notion as follows.

De�nition 4.1 (Sub-model Information Consistency [SMIC]). AmodelM sat-
is�es sub-model information consistency (SMIC) if for each state ! 2 � and for each
agent i 2 N , the sub-modelMi;! satis�es:

�i(!) = f!0 2 �i;! : �i;!i (!
0) = �i(!)g (4.1)
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In the de�nition of SMIC, we have intentionally made reference to the agent�s sub-
model.8 Here we assume that the information received by agent i at ! comes in two
parts, one part is his sub-model Mi;! and the other is his possibility set �i(!). Al-
though, in general, the agent need not be aware of !, we presume that he has access to
the contents of �i(!). He can then use his possibility set �i(!) to check if everything
meshes with the states in his sub-model. For example, if he were to �nd some state
!0 that is in �i(!), but is not in his sub-model, then he would have encountered an
inconsistency between the two parts of his information. More generally, if the set of
states in his sub-model where he should receive the possibility set equivalent to �i(!)
is di¤erent to the possibility set �i(!) he has received, he regards his sub-modelMi;!

to be informationally inconsistent with his possibility set �i(!).
We use our motivating example to illustrate this consistency check. Recall that

Michele�s sub-model at !1 is the sub-model comprising a single one-element base space
S0 = fag and her possibility set is:

�2;!12 (!1) = fag: (4.2)

Now if she checks this possibility set with her sub-model, she will �nd that the set of
states in her sub-model that could have generated this possibility set is:

f!0 2 �2;!1 : �2;!12 (!0) = fagg = fag. (4.3)

Since the contents in (4.2) and (4.3) are the same, the two parts of her information at
!1 are informationally consistent.

Turning to Simon, recall that his sub-model at !1 is the original model. Furthermore,
at !1 he receives the possibility set:

�1;!11 (!1) = f!2g. (4.4)

Now, if he checks this possibility set with his sub-model, he will �nd that the set of
states in his sub-model that could have generated this possibility set is:

f!0 2 �1;!1 : �1;!11 (!0) = f!2gg = f!1; !2g. (4.5)

Since the contents in (4.4) and (4.5) are not the same, the two parts of his information
at !1 are inconsistent. Thus we have a violation of SMIC.

We will show that SMIC is equivalent to the condition ST on the possibility corre-
spondence together with another condition that is a weakening of GR, which is itself
a weakening of the well known condition called R for re�exivity. The condition R is
equivalent to Ki(E) � E for all E 2 E , in a model with a single base space.

8Since, by R4 in the de�nitiion of a sub-model, �i;!i (!0) = �i(!
0), the expression (4.1) de�ning

SMIC could have been written simply in terms of the possibility correpondence �i(�) of the full model.
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R (Re�exivity) ! 2 �i(!) for all ! 2 �.

R requires that the possibility set at a state must include that state. Our weakening
only requires this inclusion at a state ! when the agent is aware of the base containing
S(!). Because of this conditional statement which depends on awareness, we have the
following name:

RGA (Re�exivity Given Awareness) If ! 2 S and �i(!) � S for some S 2 S, then
! 2 �i(!).

The name �re�exivity given awareness�indicates that re�exivity is required only at
a state ! where the agent is aware of the base space containing !. This follows since
knowledge implies awareness and under the conditional part of RGA, the agent knows
the base space containing !.

Our motivating example violates RGA since !1 2 ST and �1(!1) � ST , but
!1 =2 f!2g = �1(!1). The next proposition shows that in the presence of C, SMIC
is characterized by ST and RGA.

Proposition 4.2 (Informational Consistency). Fix a modelM satisfying C.
The following two statements are equivalent:

1. The modelM satis�es SMIC.
2. The modelM satis�es RGA and ST.

Proof (2 ) 1) Fix ! 2 � and i 2 N . First we show �i(!) � f!0 2 �i;! : �i(!0) =
�i(!)g. Let !̂ 2 �i(!) Then, !̂ 2 �i;!. By ST, �i(!̂) = �i(!). Hence, !̂ 2 f!0 2 �i;! :
�i(!

0) = �i(!)g. Next we show f!0 2 �i;! : �i(!0) = �i(!)g � �i(!). Let !̂ 2 �i;!
such that �i(!̂) = �i(!). By C, �i(!̂) � S(!̂). Hence, by RGA, !̂ 2 �i(!̂) = �i(!).

(1 ) 2) Suppose �rst that RGA fails. Then, for some ! 2 � and i 2 N , we have
!̂ 2 �i;! such that �i(!̂) � S(!̂), but !̂ =2 �i(!̂). Then, !̂ 2 �i;!̂, so !̂ 2 f!0 2 �i;!̂ :
�i(!

0) = �i(!̂)g. Hence, �i(!̂) 6= f!0 2 �i;!̂ : �i(!0) = �i(!̂)g, that is, M violates
SMIC.

Finally, suppose that ST fails, i.e., there are !; !̂ 2 � such that !̂ 2 �i(!) but
�i(!̂) 6= �i(!). Then !̂ =2 f!0 2 �i;! : �i(!0) = �i(!)g. Hence,M violates SMIC. �

Since our current model of the motivating example violates RGA, it is not satisfac-
tory if we require informational consistency. Since RGA is weaker than GR, it might
seem there is still a gap that potentially could be exploited to model false beliefs about
awareness. However, the next proposition shows that in the presence of C and PPK the
gap disappears, as requiring RGA will entail that GR holds as well.
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Proposition 4.3 (RGA and GR). Fix a modelM satisfying C and PPK.
The following two statements are equivalent:

1. The modelM satis�es RGA.
2. The modelM satis�es GR.

Proof (2 ) 1) is immediate from the de�nitions of RGA and GR. We prove (1 )
2). Suppose ! 2 �. If �i(!) � S(!), then by RGA, we have ! 2 �i(!). Since
�i(!) � �i(!)", GR holds. If, alternatively, �i(!) * S(!), then by C, �i(!) � S for
some S � S(!). Observe that we have S � S � S(!), ! 2 S(!) and �i(!) � S. Hence
by PPK, (�i(!))S = �i(!S). Since (�i(!))S � S, we have �i(!S) � S. Applying RGA
to !S , we �nd !S 2 �i(!S). As observed already, (�i(!))S = �i(!S), so !S 2 (�i(!))S .
But, since �i(!) � S, (�i(!))S = �i(!), so !S 2 �i(!). By Lemma 2.2 (a) (only-if
part) we have that ! 2 �i(!)", that is GR holds. �

In sum, if we want a model that satis�es C, SMIC, and KE, then we cannot accom-
modate false beliefs. We state this result as a theorem which follows immediately from
our previous results.

Theorem 4.4 (Impossiblity of False Beliefs). There is no modelM that satis�es
C, FB, KE and SMIC.

As a �nal result, we prove that C, KE and SMIC together imply the full set of HMS
conditions.

Theorem 4.5 (KE and SMIC imply HMS). Fix a modelM satisfying C.
The following two statements are equivalent:

1. The modelM satis�es KE and SMIC.
2. The modelM satis�es the full set of HMS conditions, that is, GR, ST, PPA, PPI
and PPK all hold.

Proof. (1) 2): PPK and NIA follow from KE and Proposition 2.4. Then, PPA follows
from PPK and C as noted in remark 3 of HMS, p83. Next, GR and ST follow from
SMIC and Propositions 4.2 and 4.3. It remains only to show PPI.

Let ! 2 S00 and S � S00. We need to show that �i(!)" � �i(!S)". By C, �i(!) � S�
for some S� � S00, and �i(!S) � S0 for some S0 � S. By NIA, S0 � S�. We will show
the following two things:

1. �i(!)" � �i(!S0)";

2. �i(!S0) = �i(!S).
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First, let�s see (1). From our results above, we have S0 � S� � S00, ! 2 S00, and
�i(!) � S�. Hence, �i(!)" � (�i(!))"S0 . It follows by PPK0 that (�i(!))S0 = �i(!S0),
whence �i(!)" � �i(!S0)" as required.

Next, let�s see (2). Since �i(!S) � S0, it follows by GR that !S0 2 �i(!S). Hence,
by ST, �i(!S0) = �i(!S) and (2) has been proved. It follows immediately from (1) and
(2) that �i(!)" � �i(!S)", that is, we have proved PPI.

(2) 1): As noted by HMS in their remark 2 on p83, PPI and C imply NIA. Hence,
KE follows from PPK and NIA using Proposition 2.4. SMIC follows from Propositions
4.2 and 4.3 using GR, ST, and PPK. �

In the presence of C, the requirements of SMIC and KE bring us back to the full
HMS conditions. If we want to handle false beliefs, we will have to either violate KE or
SMIC. Galanis (2013) chose to violate KE but at the cost of having to rede�ne events so
that knowledge would still be an �event�. An alternative way to allow for false beliefs
is to violate SMIC as we did in the motivating example.

5. Conclusions

We have shown that as long as the analyst�s model M satis�es the con�nement (C)
property we can maintain the tradition of each agent reasoning within a sub-model of
which they are fully cognizant even in the face of unawareness. Furthermore, this sub-
model inherits all the structural properties ofM. We can presume that while the game
theorist or outside analyst is cognizant of the full modelM, each agent i need only be
cognizant of his sub-model Mi;!. The events in the full model M of which agent i is
aware at state ! map neatly into the events in his sub-modelMi;!.

Moreover, we demonstrated how the generalized re�exivity (GR) property may be
dropped and the �projections preserve information�(PPI) property weakened, while still
retaining a number of desirable consistency properties between the events in the original
model and the sub-model. This suggests a way to model false beliefs about awareness of
others in a suitably modi�ed HMS framework. We provided one motivating example of
such a false belief and showed how it could formally be modeled in a suitably modi�ed
HMS framework. If, in addition, however, we require the modi�ed HMS framework to
satisfy an informational consistency condition, then false beliefs are precluded, and we
return to the full set of HMS conditions.
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