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Abstract. We define and discuss Savage games, which are ordinal games of incomplete infor-
mation set in L. J. Savage’s framework of purely subjective uncertainty. Every Bayesian game
is ordinally equivalent to a Savage game. However, Savage games are free of priors, probabili-
ties and payoffs. Players’ information and subjective attitudes toward uncertainty are encoded
in the state-dependent preferences over state contingent action profiles. In the class of games
we consider, player preferences satisfy versions of Savage’s sure thing principle and small event
continuity postulate. Savage games provide a tractable framework for studying attitudes towards
uncertainty in a strategic setting. The work eschews any notion of objective randomization, con-
vexity, monotonicity, or independence of beliefs. We provide a number of examples illustrating
the usefulness of the framework, including novel results for a purely ordinal matching game that
satisfies all of our assumptions and for games for which the preferences of the players admit
representations from a wide class of decision-theoretic models.

Keywords: subjective uncertainty, strategic interaction, shy events, ambiguity, Bayesian
games.

1. Introduction

In his celebrated Management Science articles, Harsanyi (1967–1968) introduced the class of
Bayesian games to analyze games of incomplete information. These are strategic interactions in
which one or more of the participants is uncertain about some relevant aspect of the game being
played. As Harsanyi noted, participants might not know precisely what consequence will result
from the actions chosen, or they may be unsure about what actions are actually available to the
other participants or they may be uncertain about the other participants’ preferences. His key
insight was to assume that each participant deals with her incomplete information by assigning a
subjective probability distribution over all the variables not known to her and chooses an action
out of the set of those available to her that maximizes the mathematical expectation of her payoff
in terms of that probability distribution. In such a formulation, however, the preferences of the
participants rather than being primitives of the model are instead constructed from the (cardinal)
subjective probabilities and payoffs. Moreover, this reduced-form representation rules out behavior
that does not conform to (subjective) expected utility theory, such as, for example, the extensions
of expected utility that allow for non-neutral attitudes toward ambiguity.

In this paper, we suggest an alternative way to model the strategic interaction of a finite number
of players in the presence of purely subjective uncertainty. To do so, we adopt the framework of
Savage’s theory of decision-making under uncertainty, and adapt it to allow for strategic interaction
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among the players. In the process, we introduce a new class of games, denoted Savage games, in
which the players’ objects of choice (strategies) are identified with Savage acts (state-contingent
plans), and propose a solution concept that captures the idea of players lacking a strict incentive
to deviate at equilibrium. The following desiderata guide our design of a choice-based theory of
strategic interaction under subjective uncertainty:

(1) Expressed in terms of preferences. Equilibrium behavior seems more basic than any par-
ticular functional form representing utilities. Therefore, we follow the decision-theoretic
tradition, and write our assumptions in terms of basic preferences.

(2) Consistency with Bayesian games. The class of games should include Bayesian games as a
proper subclass. Moreover, within that subclass the solution concept should be equivalent
to Bayesian equilibrium.

(3) Consistency with the Savage framework. In the single-player setting the class of games
should be equivalent to Savage’s framework for individual decision-making under uncer-
tainty. In particular, it should be able to incorporate generalizations of subjective expected
utility such as those allowing for non-neutral attitudes toward ambiguity, thereby allowing
for the incorporation of such attitudes in multi-player settings.

(4) Theoretical consistency. The framework should be sufficiently rich to accommodate as-
sumptions that guarantee the existence of equilibrium. These assumptions should be closely
related to the assumptions made in models of subjective expected utility and its general-
izations. And, ideally, motivated by these assumptions, they should afford us novel insights
about the equilibrium of games with expected as well as non-expected utility.

(5) Parsimony. We want the framework and the assumptions imposed therein to be based
on the smallest set of elements needed to specify the strategic interaction in which the
participants facing subjective uncertainty are engaged.

With all of this in mind, our purpose in this paper is to consider a wider circle of issues than
simply the characterization of a class of preferences that admit a particular form of representation.
Similarly, our purpose is not to provide an epistemic foundation for decision-making in the presence
of subjective strategic uncertainty.

Savage’s framework provides a natural starting point for the study of strategic interactions among
players in the presence of subjective uncertainty. It allows us, as well as behoves us, to model equilib-
rium behavior without the usual technical paraphernalia of convexity or monotonicity of strategies
and preferences, and the related praxis that seems to have arisen more from considerations of ana-
lytical tractability rather than motivated by, for example, behavioral properties of the underlying
preferences.

Working with such a framework, however, poses a major challenge as it precludes the use of most
of the techniques available in the extant literature on equilibrium theory. First, in a setting that does
not involve any notion of objective randomization, the lack of convexity rules out classical calculus
approaches as well as the geometric analysis developed over the past century in economic theory.
Secondly, without a natural order structure and corresponding intrinsic notion of monotonicity, it
is not possible to use the more recent order-theoretic ideas and associated results. Without delving
into the technical details, let us just note at this juncture, that our theorem for the presence of an
equilibrium is crafted around the standard consequentialist reasoning embodied in Savage’s sure-
thing principle exploiting the ability to move from one best response to another by means of the
decomposable choice property of the preferences.

The paper is organized as follows. First, by means of a simple example, we illustrate in section 2
the environment and the main ideas in the model. In Section 3 we describe and study Savage games,
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introducing and motivating the assumptions that underpin our main theorem on the existence of
equilibrium. In Section 4 we provide an example of a purely ordinal matching game that satisfies
all the assumptions required for our existence result, thereby illustrating the notion of ordinal
equilibrium. In Section 5 we study games with recursive payoffs. We highlight in this section how
our assumptions and the result on the existence of equilibrium translate to Bayesian games, games
with multiple priors and games in which preferences display other forms of non-expected utility.
Section 6 contains two examples with recursive payoffs, the first a Bayesian game and the second
with (recursive) multiple priors. We conclude in Section 7 with a discussion of related work, open
questions and possible extensions of this work. All the proofs can be found in Appendix A.

2. The environment and an example

Our aim in this paper is to develop an ordinal class of games for analyzing strategic interaction
involving incomplete information with purely subjective uncertainty that eschews any a priori
specification of the cardinal aspects of Bayesian games such as utilities and/or probabilities. Instead
any instrinsic attitudes toward uncertainty will be identified (to the extent that this is possible)
solely from the (ordinal) preferences of the participants that guide the choices they make in the
“play” of the game. Thus everything that any of the participants may be uncertain about is
encoded in a state space that comprises a collection of mutually exclusive and exhaustive states (of
the world). As in Savage (1954), each state will be taken to be “a description of the world, leaving
no relevant aspect undescribed” (Savage, 1954, p. 9). Although Savage was providing a foundation
for a theory of individual choice under uncertainty, he viewed his approach as one that could
accommodate considerable generality in terms of the degree of specificity and comprehensiveness
of the description of a state of the world. Indeed one of his (motivating) examples of what such a
description could conceivably entail was “. . . [t]he exact and entire past, present, and future history
of the universe, understood in any sense, however wide” (Savage, 1954, p. 8). For any particular
strategic interaction, however, we concur with Savage’s advocacy for “the use of modest little worlds,
tailored to particular contexts. . . ” (Savage, 1954, p. 9). Thus the formal specification of the state
space need only be as rich as is required to accommodate the universe of things that the participants
are not sure about and that are relevant to the specific strategic interaction being analyzed.

We define a strategy for a player to be a state-contingent choice of action. We refer to the
collection of strategies available to that player as her strategy set. A consequence will then be
anything that may happen as a result of the actions chosen by the participants and the state of
the world that obtains. One significant feature of strategic interaction under uncertainty which
is not present in Savage’s framework for individual choice under uncertainty is that, in general,
different participants will have different information about which state of the world obtains. We
shall interpret the information available to a player as corresponding to those subsets of the state-
space over which she can “condition” her choice of strategy. That is, we shall interpret any subset
of the state space as an (information) event for this player if she is able to “deviate” from any of
her available strategies on that event to any other of her available strategies.

To illustrate these ideas, consider the following strategically interactive elaboration of Sav-
age’s omelet example. Leonard has just broken five good eggs into a bowl when the front doorbell
to his apartment sounds. Jimmie his room-mate comes into the kitchen and volunteers to finish
making the omelet and to clean up, allowing Leonard to go and open the door which is not visible
from the kitchen and is far enough away from the kitchen that anything said there cannot be heard
by anyone in the kitchen. They both think the caller could be either their landlord or their neigh-
bor, Jane, on whom, everybody knows, Leonard has a crush. Moreover, everyone knows that the
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feelings he has toward Jane are reciprocated by her. Leonard is unsure, however, about Jimmie’s
attitude toward this budding romance. In particular, he does not know whether Jimmie is envious
or happy for them. If the caller turns out to be Jane, then Leonard must decide whether or not
to invite her to come in to share their omelet.1 A sixth egg, intended for the omelet, lies unbroken
beside the bowl containing the five good eggs. Jimmie must decide either to break this egg into
the bowl containing the five good eggs or to break it into a saucer affording him the opportunity
to check whether it is rotten before adding it to the other five good eggs.

For some reason Leonard and Jimmie (must) make their respective decisions simultaneously. To
ensure that it is only Leonard and Jimmie who have a non-trivial decision to make, let us assume
that Jane will accept for sure any invitation to come in and share their omelet.

In this description of strategic interaction under uncertainty in which Leonard and Jimmie are
the two players, there are three things that either one or both of them are uncertain about:

(1) whether or not the egg is rotten;
(2) whether the caller at the door is their landlord or is Jane;
(3) whether Jimmie is envious of or is happy about Leonard and Jane’s romance.

As these three things are at least logically distinct, it is natural to model the uncertainty with a
state space that has 23 elements. For example, we could specify the state space as follows:

Ω = {0, 1} × {0, 1} × {0, 1}
where each ω = rst ∈ Ω is the state in which

r =

{
1 if the sixth egg is rotten ,

0 if the sixth egg is good .

s =

{
1 if the caller at the door is the landlord ,

0 if the caller at the door is Jane .

t =

{
1 if Jimmie is envious of Leonard and Jane’s romance ,
0 if Jimmie is happy about Leonard and Jane’s romance .

From the description above we can also identify four distinct actions that may be taken in the course
of “play”. So, for example, we could take the action set A to be the four-element set {a1, a2, a3, a4},
where action

a1 is breaking the sixth egg into the bowl containing the other five good eggs.
a2 is breaking the sixth egg into a saucer for inspection.
a3 is inviting the caller at the door in to share the omelet.
a4 is not inviting the caller at the door in to share the omelet.

A consequence can then be associated with each (feasible) action pair and state combination.
For example, the action pair and state combination (a1, a4, 111) is associated with the consequence
that results when Jimmy who is envious of Leonard and Jane’s romance, breaks a rotten egg into
the bowl containing the other five good eggs. This saves Jimmy the bother of having to wash an
extra saucer, but in this instance at the cost of ruining the omelet. Moreover, when Leonard opens
the door, he finds it is their landlord, to whom he does not extend an invitation to come in to join
them and share their omelet.

1We suppose that their relationship with their landlord although proper and polite is not one that could be said
to be “familiar” to any meaningful degree and so neither would ever consider it appropriate to invite their landlord
in to share a meal.
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We take the strategies available to our players, Leonard and Jimmie, to be those mappings
from the state space Ω to the action set A that are consonant with the above description of their
strategic interaction under uncertainty in terms of what each player knows and does not know and
consequently what actions are available to him. For example, if fJ denotes a strategy available to
Jimmie, then its range must be a non-empty subset of {a1, a2}, since Jimmie does not go to answer
the door and so cannot invite Jane to share the omelet, should she be the one who was ringing their
front doorbell. Moreover, assuming that Jimmie knows his own feelings about Leonard and Jane’s
romance, then the only aspect of the state ω = rst on which he can condition his decision whether
to select action a1 or action a2 is the “t”. Notice, when he is deciding between breaking the sixth
egg into the bowl with the five good eggs or breaking it into a separate saucer, he does not know
whether the egg is rotten or good, nor does he know who is the caller at the door.

If we denote the set of strategies available to Jimmie by FJ , it follows from the above description
of the strategic interaction that

FJ = {fJ : Ω → {a1, a2} | f(00t) = f(01t) = f(10t) = f(11t), t = 1, 2} .

Correspondingly, if fL denotes an available strategy for Leonard, then it follows from the de-
scription of the situation above that, for any state ω = rst with s = 1 (that is, the event in which
the caller at the door is the landlord), fK(ω) = a4, since we have assumed, given the nature of their
relationship with their landlord they would never contemplate inviting him in to share a meal.2 So,
if we denote the set of strategies available to Leonard by FL, then it follows from our story above
that

FL = {fL : Ω → {a3, a4} | f(111) = a4 and f(0s0) = f(0s1) = f(1s0) = f(1s1), s = 1, 2} .

Notice that we can associate with each strategy profile (fJ , fL) in FJ ×FL the following mapping
from states to consequences

ω 7→ (fJ(ω), fL(ω), ω)

Thus, from the perspective of the analyst or modeler, the ex ante uncertainty facing the players
given they collectively choose their actions according to that strategy profile is embodied in this
associated state-contingent consequence. It is therefore natural to assume that each player’s choice
of strategy will be guided by her underlying preferences over state-contingent consequences that
will be reflected by a binary relation defined over the set of strategy profiles. Hence, to complete
the specification of the ordinal normal-form game for modeling Leonard and Jimmie’s strategic
interaction under uncertainty, requires two binary relations ≿J ,≿L⊂ FJ ×FL corresponding to the
(ex ante) preferences of Jimmie and Leonard, respectively, that will guide their strategy choice.

An equilibrium for this ordinal normal-form game is a strategy profile (f∗
J , f

∗
L) for which

(f∗
J , f

∗
L) ≿J (fJ , f

∗
L), for all fJ ∈ FJ

and (f∗
J , f

∗
L) ≿L (f∗

J , fL), for all fL ∈ FL

Notice that for the purpose of finding such an equilibrium (should one exist) there is no need
for one player to be able to express a preference between two strategy profiles that involve different

2Alternatively we could consider expanding Leonard’s strategy set to include strategies that involve him extending
an invitation to the landlord and through the specification of his preferences ensure that it would never be a best
response for him to select any strategy that involved him inviting the landlord in. However, unless we presumed a
pre-determined response by the landlord this would mean the landlord would become a third strategic player whose
behavior we would need to consider. Moreover, our purpose here is to illustrate how the uncertainty one player may
have about the actions available to another player can be modeled within the Savage game framework.
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strategy choices by the other player. Although such a preference may be plausible from the descrip-
tion of the strategic interaction, we note that it involves comparisons across pairs of strategy profiles
that cannot inform us about how that player might choose her strategy in the ordinal game. For
example, for any given strategy of Leonard’s fL ∈ FL, if Leonard had the following strict preference
(fJ , fL) ≻L (f ′

J , fL), (where ≻L denotes the asymmetric component of ≿L) then no matter what
preferences Jimmie had, this strict preference could never guide Leonard’s choice of strategy since
to move from the latter strategy profile to the former can only be achieved by a change in strategy
choice by Jimmie. Although Leonard might strictly prefer the former to the latter, which of these
two strategy profiles might be played should Leonard choose the strategy fL is a choice that would
be made by Jimmie and so presumably would be guided by his preferences, not Leonard’s. We
simply note at this juncture that the assumptions we impose on the preferences of players in order
to establish the existence of an equilibrium of the ordinal game do not require any player to be
able to express a preference between any pair of strategy profiles that involves a different strategy
choice by any player other than himself.

3. Savage games

Following the discussion of the previous section, we now present the formal description of a
Savage game. It is specified by the ternion

(Ω, A, (Fi,≿i)
N
i=1) .

The set Ω denotes the common state space and A is the common nonempty action set, which
we take to be a compact metric space. The tuple (Fi,≿i)

N
i=1 is an N -player ordinal game whose

parameters are described below.
There are N ≥ 1 players indexed by i = 1, . . . , N . We abuse notation by having N also denote

the set {1, . . . , N}. However, we employ standard notation for the indexing of player profiles. In
particular, for any N -tuple (Zi)

N
i=1 of sets we write Z for its N -ary Cartesian product and for each

player i we write Z−i for the Cartesian product of the tuple (Zj)j ̸=i. Vectors in Z are called profiles
and vectors in Z−i are called profiles of players other than i. A profile z ∈ Z is also written as
(zi, z−i) where zi is the i-th coordinate of z and z−i is the projection of z into Z−i.

Player i has a non-empty set Fi of A-valued functions on the state space Ω called the strategy
space. A function fi : Ω → A in Fi is called a strategy for player i. Let F be the set of strategy
profiles and for each i let F−i be the set of strategy profiles of players other than i.

Player i is also associated with a binary relation ≿i on the set of strategy profiles F describing
her weak preferences. Let ∼i represent the indifference relation associated with ≿i, that is f ∼i g if
f ≿i g and g ≿i f . Our first assumption, A1, requires the preferences of the players to be complete
and transitive with respect to their own choices.

A1. For any f ∈ F and any gi, hi ∈ Fi,
(1) either (fi, f−i) ≿i (gi, f−i) or (gi, f−i) ≿i (fi, f−i), and
(2) if (fi, f−i) ≿i (gi, f−i) and (gi, f−i) ≿i (hi, f−i) then (fi, f−i) ≿i (hi, f−i).

A strategy profile f ∈ F is an equilibrium if

f ≿i (gi, f−i)

for all gi ∈ Fi and i ∈ N .
In a Savage game the information available to a player is encoded in the specification of the set of

strategies Fi. Following standard notation, for any subset E ⊆ Ω and two functions fi, gi : Ω → A
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let giEfi be the function from Ω to A given by

giEfi(ω) =

{
gi(ω) if ω ∈ E ,

fi(ω) otherwise .

We refer to the function giEfi as the gi-deviation from fi conditional on E.

Information events. A set of states E ⊆ Ω is an (information) event for Player i if she can
condition her choice of strategy on E, that is, giEfi ∈ Fi for all fi, gi ∈ Fi. Denote by Fi the family
of events for Player i.

One way to interpret the information structure of a player is to view the Savage game as a
dynamic game. In the first stage, each Player i receives partial information about the true state of
the world, encoded in Fi, the set of information events for Player i. Only after that, in the interim
stage, do players make their choice of action. Then in the last stage, all uncertainty is resolved and
the final consequence is realized.

With this interpretation of the information structures of the players in mind, the next assump-
tion can be viewed as being motivated by the standard consequentialist reasoning embodied in
Savage’s sure thing principle. It is, in fact, based on the normative rule dynamic programming solv-
ability introduced by Gul and Lantto (1990) in the context of individual choice under uncertainty.
Gul and Lantto highlight that although dynamic programming solvability constitutes a weakening
of Savage’s postulate P2, it still allows for a simplification of the task faced by an individual in
finding an optimal “plan of action” for a two-stage decision tree by allowing the player to “fold back”
or “roll back” the two-stage decision tree. To illustrate the idea, Gul and Lantto give the example
of a commuter having to decide how to go to work. The options are to walk, to drive, to bike or to
take the bus. Suppose the following two plans are optimal: (1) drive if it rains, bike if it is sunny;
and (2) take the bus if it rains, walk if it is sunny. Then, they argue, the following plans of actions
should also be optimal: (3) drive if it rains, walk if it is sunny; and (4) take the bus if it rains, bike
if it is sunny. In the setting of a Savage game this translates into the requirement that piecewise
combinations of best responses (consistent with that player’s information) remain a best response.

In what follows, we shall omit the quantifiers from our assumptions when they are obvious. In
particular, f is understood as an arbitrary member of F , fi and gi of Fi, and E always denotes an
event in Fi.

A2. If (fi, f−i) ∼i (gi, f−i) ≿i (hi, f−i) for all hi ∈ Fi, then (giEfi, f−i) ∼i (fi, f−i) for all E ∈ Fi.

The reader will see in Section 5 that in games in which the preferences are given by payoffs, A2
holds when a wide range of assumptions that have been studied in the literature are satisfied. In
particular and as has been already foreshadowed above, the following proposition establishes A2 is
implied by Savage’s postulate P2.

Proposition 3.1. The following condition implies A2:
P2: If (fi, f−i) ≿i (giEfi, f−i), then (fiEgi, f−i) ≿i (gi, f−i).

We do not assume that the game contains constant strategies or that it is non-degenerate in the
sense of Savage. We make, however, the following “richness” assumption on strategies. It basically
states that every state-contingent plan of action that a player can approximate by sequences of
strategies must also be a feasible strategy for that player.

A3. If En ∈ Fi is an increasing sequence of events for Player i, then gi(∪nEn)fi ∈ Fi for every
fi, gi ∈ Fi.
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Notice that, by construction, Fi is a collection of subsets of Ω (events) that contains Ω, and is
closed under the operations of complement and finite unions, that is, Fi is an algebra of sets. The
next proposition establishes that, if Assumption A3 holds, then Fi is also closed under countable
unions, that is, it is a σ-algebra.

Proposition 3.2. The collection of events for Player i, Fi, is an algebra over Ω. If A3 holds, then
Fi is a σ-algebra.

When the structure of a Bayesian game is available, we have the following corollary, that shows
that Fi is precisely the smallest σ-algebra for which all Player i’s strategies, as usually defined, are
measurable.

Corollary 3.3. Let Σi be a σ-algebra over Ω and A be a compact metric space with |A| ≥ 2. If Fi

is the set of all Σi-measurable functions to A, then A3 holds and Fi = Σi.

We extend the concept of a Savage null event to our setting of interdependent preferences. To
do so, first, it is useful to define what it means for a pair of strategy profiles to be strategically
equivalent for a player.

Strategic equivalence. The strategy profiles f, g ∈ F are strategically equivalent for Player i,
denoted f ≈i g, if for all hi ∈ Fi,

(hi, f−i) ≿i (fi, f−i) ⇐⇒ (hi, g−i) ≿i (gi, g−i)

and (fi, f−i) ≿i (hi, f−i) ⇐⇒ (gi, g−i) ≿i (hi, g−i) .

That is, if f ≈i g, then Player i’s preferences over her own strategies in Fi are the same when the
other players are choosing the profile f−i as when they are choosing the profile g−i.

The following properties readily follow from the definition of strategic equivalence.

Corollary 3.4. The binary relation ≈i is an equivalence relation (that is, it is reflexive, symmetric
and transitive).

Corollary 3.5. For any f ∈ F and any gi ∈ Fi, (fi, f−i) ≈i (gi, f−i) if and only if (fi, f−i) ∼i

(gi, f−i) .

We shall refer to the strategic analog of a null event as a strategically shy event. An event will
be deemed strategically shy for a player if any deviation that player can make conditional on that
event from any strategy profile leaves that player indifferent and does not affect any other player’s
preferences over her own strategies. That is, the original strategy profile and the strategy profile
resulting from that player’s deviation are strategically equivalent for every player.

Strategically shy events. An event E ∈ Fi is strategically shy for Player i if for all f ∈ F and all
gi ∈ Fi we have (giEfi, f−i) ≈j (fi, f−i), for every player j ∈ N . Denote by Ni the set of all events
that are shy for Player i. Let Ri = Fi \ Ni be the set of strategically relevant events for Player i.

Notice that two players i, j ∈ N may share an event E ∈ Fi ∩ Fj that is strategically shy for
Player i but relevant for Player j. We do not view this as anomalous or inconsistent. It simply means
that when conditioning on this event, no deviation by Player i has any strategic relevance for any
of the players. However, there exists at least one deviation by Player j that is strategically relevant
either for that player or for at least one of the other players. Even in the context of individual choice
under uncertainty, Karni, Schmeidler, and Vind (1983) note that if preferences are state-dependent,
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then interpreting null events as ones that are necessarily viewed by the decision-maker as having
zero probability of occurring is problematic. For example, if one of the events involves loss of life
then its nullity could reflect the decision-maker having no strict preference about which outcome
obtains in the event she is dead, rather than her believing she has no chance of dying.

Turning to continuity, we require the preferences of the players to be continuous with respect
to state-wise converging sequences of strategy profiles. Notice that condition A4 is satisfied in
continuous Bayesian games in which the payoff of the players is computed by means of an integral.

A4. If fn
i ∈ Fi, gni ∈ Fi, and fn

−i ∈ F−i are sequences converging state-wise to fi ∈ Fi, gi ∈ Fi,
and f−i ∈ F−i, respectively, and (gni , f

n
−i) ≿i (f

n
i , f

n
−i) for all n, then (gi, f−i) ≿i (fi, f−i).

By construction, the set of strategically shy events for Player i is closed with respect to subsets
and finite unions, that is, it is an ideal. The next proposition establishes that, if assumption A4
holds, then Ni is also closed under countable unions, that is, it is a σ-ideal.

Proposition 3.6. The collection of shy events for Player i, Ni, is an ideal in Fi. If A3 and A4
hold for all players, then Ni is a σ-ideal.

The next assumption is a “fullness” assumption on strategically relevant events. A family of
events S ⊆ Fi is closed if for any increasing sequence of events En in S whose union E is an event,
we have E ∈ S.

A5. There is a sequence of closed families Sm
i of events satisfying:

(1) If E ∈ ∩mSm
i , then E is strategically shy for Player i.

(2) If En is a sequence of strategically relevant events for Player i and

lim inf
n→∞

max
ω∈Ω

1
n |{1 ≤ k ≤ n : ω ∈ Ek}| = 0 ,

then for each m there is n such that En ∈ Sm
i .

Assumption A5 can be interpreted as follows. Conditions (1) indicates that the sequence Sm
i

comprises families of small events forming a neighborhood base for the subfamily of shy events. The
expression 1

n |{1 ≤ k ≤ n : ω ∈ Ek}| is the average incidence of state ω arising from the sequence of
events En. Keeping that in mind, condition (2) then implies that players understand shy events to
be limits of decreasing sequences of relevant events.

Assumption A5 adapts a condition of Ryll-Nardzewski and Kelley that is sufficient for existence
of a measure on a σ-algebra (see the addendum to Kelley (1959)). An alternative to assumption
A5 would be to follow the approach taken by Arrow (1971), Fishburn (1970), and Villegas (1964),
and construct a probability measure over a given σ-algebra based on a qualitative probability.3 The
reason we do not follow that approach is it entails monotonicity assumptions, which in turn imply
state-independent preferences. In the context of a Bayesian game, that implies that each player
ex post payoff cannot depend on the players’ types, thus ruling out an important class of Bayesian
games.

The following proposition establishes the equivalence between A5 and existence of a measure on
Player i’s collection of events Fi.

3A binary relation ≥ is a qualitative probability if
(1) ≥ is a weak order (reflexive, complete and transitive);
(2) E ≥ ∅ for every event E; and
(3) E′ ∩ E = E′′ ∩ E = ∅ implies [E′ ≥ E′′ ⇐⇒ E′ ∪ E ≥ E′′ ∪ E].
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Proposition 3.7. If A3, A4 hold for all players, then the following are equivalent:
(1) Assumption A5 holds for Player i.
(2) Fi admits a measure πi such that πi(E) = 0 if and only if E ∈ Ni.

As an example, suppose Ω = [0, 1]. Suppose also that for a particular Player i the set Fi is the
Lebesgue subsets of Ω, and Ni is the collection of subsets of zero Lebesgue measure, λ. In this case,
one possibility is for the family of events Sm

i to be given by Sm
i = {E ∈ Fi : λ(E) ≤ 1

m}. Then one
example of a sequence of strategically relevant events satisfying A5(2) is given by {Enm}, in which
Enm = [m−1

n , m
n ), n ≥ 1, and m = 1, . . . , n. In this example, the measure πi whose existence is

guaranteed by Proposition 3.7 could be any measure whose collection of zero measure sets coincides
with the collection of zero Lebesgue measure sets, Ni.

The next assumption is an interdependent version of Savage’s postulate P6, which is usually
interpreted as a small event continuity property.

A6. If (fi, f−i) ̸≈j (gi, f−i) for some j ∈ N , then for each hi ∈ Fi there exist events {E1, . . . , En}
such that ∪kE

k = Ω and (fi, f−i) ̸≈j (hiEkgi, f−i) for all k.

As with P6, this assumption ensures that each relevant event can be split into two disjoint
relevant events. Therefore, A6 implies that the measure πi over Fi from Proposition 3.7 is atomless.

Proposition 3.8. If A6 holds, then every E ∈ Ri contains two disjoint events in Ri.

The following proposition asserts that, in fact, under A3 and A4, assumptions A5 and A6 are
equivalent to measure πi being atomless.

Proposition 3.9. If A3 and A4 hold for all players, then the following are equivalent:
(1) Assumptions A5 and A6 hold for Player i.
(2) Fi admits an atomless measure πi such that πi(E) = 0 implies E ∈ Ni.

Notice that in condition (2) some strategically shy events of a player may be given a positive
measure. The only requirement is that all events assigned zero measure are strategically shy for that
player. Since we are dealing with countably additive measures, however, there exists a corresponding
measure that is positive on strategically relevant events and zero on all strategically shy events.

Our final assumption imposes a restriction on the best responses of players that is essential for
existence of equilibrium in the Savage game. It plays the role of a compactness assumption in more
standard equilibrium existence proofs. To be more specific, assumption A7 requires players to be
able to find best responses that are not too erratic.

Regularity of best responses. A subset of strategies Xi ⊆ Fi is said to be countably distinguished
if there exists a countable set of states W ⊆ Ω such that for any distinct fi, gi ∈ Xi we have
fi(ω) ̸= gi(ω) for some ω ∈ W.

A7. For each i there is a set Xi ⊆ Fi of strategies satisfying the following:
(1) For each f ∈ F , there is gi ∈ Xi satisfying (gi, f−i) ≿i (fi, f−i).
(2) Xi is countably-distinguished and every sequence in Xi has a subsequence converging state-

wise to a strategy in Xi.

The significance of A7 can be seen in some well-known examples of Bayesian games that fail
to have pure-strategy equilibrium. The following example is taken from Radner and Rosenthal
(1982).4

4Another particularly striking example is presented in Khan, Rath, and Sun (1999). An argument similar to the
one presented for Example 3.10 shows that A7 fails to hold.
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Example 3.10. There are two players, 1 and 2. Each player has two actions, thus A1 = A2 = {0, 1}.
Payoffs are zero-sum, according to the following payoff matrix:

Player 2

Player 1

0 1
0 (1, -1) (-1, 1)
1 (-1, 1) (1, -1)

The players type space is the unit square [0, 1]2. The players’ types are distributed uniformly
on the triangle of the unit square given by {(t1, t2) : 0 ≤ t1 ≤ t2 ≤ 1}. Radner and Rosenthal show
that this game has no pure-strategy equilibrium. At any equilibrium, for each player i, conditional
on his type being t, the probability of the other player choosing action 0 has to be 1

2 . That is, for a
pair of pure strategies (f1, f2) to be an equilibrium in this game, it is necessary and sufficient that

λ([t1, 1] ∩ f−1
2 (0))

(1− t1)
=

λ([0, t2] ∩ f−1
1 (0))

t2
=

1

2

for almost every t1 and almost every t2, with λ denoting the Lebesgue measure. Therefore, if it
existed, at a pure-strategy equilibrium, the strategies played would be very erratic. In fact, it is
possible to construct a sequence of strategies of player 2 to which player 1’s (essentially unique)
best responses become increasingly erratic, and thus cannot be contained in a subset of strategies
of player 1 that satisfies A7. To illustrate that statement, we provide the first few elements of one
possible such erratic sequence of strategy profiles. Consider the following sequence of strategies of
player 2:

f1
2 (t2) = 0

f2
2 (t2) =

{
0 if t2 ∈ [0, 0.5)

1 if t2 ∈ [0.5, 1] .

f3
2 (t2) =

{
0 if t2 ∈ [0, 0.3) ∪ (0.6, 1]

1 if t2 ∈ [0.3, 0.6] .

· · ·

The unique (up to a zero Lebesgue measure set) best responses of player 1 would then be

f1
1 (t1) = 0

f2
1 (t1) =

{
0 if t1 ∈ [0, 0.5

√
2)

1 if t1 ∈ [0.5
√
2, 1] .

f3
1 (t1) =

{
0 if t1 ∈ [0, 0.3

√
2) ∪ (0.3

√
6, 1]

1 if t1 ∈ [0.3
√
2, 0.3

√
6] .

· · ·

It is possible to continue the sequence of strategy profiles {(f1
1 , f

1
2 ), (f

2
1 , f

2
2 ), (f

3
1 , f

3
2 ), . . .} such that

each element (fn
1 , f

n
2 ) has exactly n − 1 discontinuity points. Moreover, because each fn

1 is the
(essentially) unique best response to player 2’s strategy fn

2 , for A7 to be satisfied the entire sequence
{fn

1 } must be contained in X1. However, this sequence has no convergent subsequence.
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Assumption A7(2) is equivalent to saying that Xi is metrizable and compact in the sequential
topology. For clarity, we provide some examples of such spaces.

(a) Xi is a finite set.
(b) Xi contains a countable set and its countable accumulation points.
(c) If Ω and A are compact metric spaces, then any closed collection of equicontinuous strategies

satisfies this assumption. In particular, Xi is the set of all Lipschitz continuous functions
with common constant.5

(d) Suppose that Ω is the set of all continuous functions from [0, 1] to R, and A is the set
of Radon measures on [0, 1]. Then the set of all Radon probability measures with the
weak∗-topology has the required property.6

(e) Suppose that Ω = [0, 1] and A = Rd. For any compact set of functions Y in L∞, there is a
selection from the equivalence classes of these functions that is compact and metrizable in
the sequential topology.7

(f) Suppose that Ω is a measure space with σ-algebra F , and A is a Banach space. This
assumption is satisfied whenever Xi is a sequentially compact set of bounded measurable
functions for the topology of state-wise convergence, and there is a probability measure π
on F such that if fi and gi are distinct functions in Xi, then they differ on a set of positive
π measure.

We are now ready to state the main result.

Theorem 3.11. If A1–A7 hold for all players, then an equilibrium exists.

The proof of Theorem 3.11 is in Appendix A, but we conclude this section with a brief overview
of the relevance of each assumption. We prove the theorem by showing that the product correspon-
dence of the players’ best responses has a fixed point. Assumptions A1 and A3–A5 guarantee that
each player’s best response correspondence is well-defined and has a closed graph.8 Assumptions
A2 and A6 guarantee that the values of each player’s best response correspondence is path con-
nected, which plays the role of convexity in standard fixed point proofs. 9 Finally, assumption A7
is used to show that the product correspondence of best responses has a subcorrespondence whose
image is contained in a compact subset of the strategy space. Moreover, this subcorrespondence

5A family of functions F between metric spaces is called equicontinuous if for every ε > 0 there exists δ > 0
such that d1(x, y) < δ implies d2(f(x), f(y)) < ε for every f ∈ F . A function f between metric spaces is Lipschitz
continuous if there exists a constant K, called Lipschitz constant, such that d2(f(x), f(y)) < Kd1(x, y).

6A Radon measure µ is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is both
locally finite (every point of X has a neighborhood U for which µ(U) is finite) and inner regular (for any Borel
subset B of X, µ(B) is the supremum of µ(K) over all compact subsets K of B). The weak∗-topology on a set M of
measures on a measurable space (Ω,F) is the weakest topology such that all the linear functionals Lf : µ 7→

∫
Ω f dµ

for f : Ω → R F-measurable and bounded, are continuous.
7Let (Ω,F , µ) be a measure space, and A a Banach space. Then L∞(Ω,F ;µ) is the set of (equivalence classes

of) essentially bounded functions from Ω to A endowed with the essential supremum norm:

∥f∥∞ = inf{c > 0: |f(ω)| ≤ c for µ-a.e. ω} .

8A correspondence B : X ↠ Y between topological spaces is said to have closed graph if the set {(x, y) ∈
X × Y : y ∈ B(x)} is a closed subset of X × Y .

9A topological space X is path connected if any two given elements of it can be joined by a path, that is, given
x, y ∈ X, there exists a continuous map f : [0, 1] → X such that f(0) = x and f(1) = y.
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inherits the path-connectedness and closed graph properties of the larger best response correspon-
dence. Therefore, this allows us to apply the Eilenberg and Montgomery fixed point theorem to
this subcorrespondence.

4. Matching with incomplete information

To illustrate the main concepts, definitions and structures of the framework developed in the
previous section, we present a fully specified example of a purely ordinal matching process that
satisfies all of our assumptions, hence establishing the existence of an equilibrium match. This
model can be viewed as an abstraction of the academic job market, or the system of academic ad-
missions. As far as we know, there are no other examples in the literature of incomplete information
matching games without values, beliefs, and without a specification of a utility representation for
the preferences of the players.

There is a finite set of firms, N = {1, . . . , N}; we denote an individual firm by i ∈ N . There
is also a finite set of workers, W = {1, . . . ,W}; we denote an individual worker by j ∈ W . The
end result of the matching process in this job market for worker j is denoted by a pair (i, b). The
first element i ∈ N ∪ {0} is the firm to which this worker is allocated, with the interpretation that
0 corresponds to the worker not being employed by any of the firms in the market. The second
element b specifies for each worker j, the remuneration bundle that firm i pays worker j.

To avoid dealing with measurability issues and for ease of exposition, we identify the space B
of feasible remuneration bundles with a finite subset of some Euclidean space Rℓ, with ℓ ≥ 1. As
an example, one dimension could represent the salary offer, towards which workers have strictly
monotone preferences. Other dimensions could be the levels of health and retirement benefits. Still
other dimensions could represent non-monetary compensations, such as the city in which the job is
to be performed. We assume 0 ∈ B and take this to be the “default bundle” offered to any worker
that is allocated to “firm” 0, as well as the “default bundle” offered by any firm to a worker with
whom the firm does not want to be matched.

Hence formally, an outcome of this matching game can be taken to be a mapping

θ : W 7→ (N × B) ∪ {0, 0} ,

where for each worker j, θ1(j) is the firm at which worker j ends up employed and θ2(j) is her
remuneration bundle. Let Θ denote the (by construction, finite) set of all possible outcomes of the
matching process.

So that workers need not consider any strategic interactions when making their choices, we
assume that each worker only cares about the specifics of her own match. That is, worker j is
indifferent between any pair of outcomes θ and θ′ for which θ(j) = θ′(j). In particular, each worker
j in W is characterized by a binary relation Pj defined on N×B∪{0, 0}, that is complete, transitive
and (so that best responses will be unique) asymmetric. That is, Pj is a (complete) strict preference
relation. In addition, we suppose

(0, 0) Pj (i, 0) for every i ∈ N and every j ∈ W .

Asymmetry of Pj precludes (i, 0) Pj (0, 0) from holding for any firm i and any worker j. It follows
in the market game described below that an “offer” of the (default) bundle 0 by a firm to a worker
guarantees that this worker will not be employed by that firm. The preference relation Pj of each
worker j is taken to be common knowledge among the market participants.

The preferences of the firms, however, are not commonly known. The uncertainty they face at
different stages of their market interactions requires us to define their preferences at three different
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levels of information. In reverse chronological order we have: the ex post level; the interim level;
and, the ex ante level.

Firm i’s private information is encoded in a (measurable) signal space (Ωi,Σi), such that each
Ωi is a separable and complete metric space, and Σi is the Borel σ-algebra. Let Ω = ×iΩi denote
the product of the Ωi’s, and let Σ denote the (product) Borel σ-algebra.

Let R denote the (finite) set of complete and transitive binary relations defined on Θ. Given the
profile of signals ω in Ω, each firm i’s ex post preferences over outcomes Θ is given by Rω

i ∈ R. We
assume that the realization of the signal ωi fully parametrizes (or reveals) the ex post preferences of
firm i, that is, Rω

i = Rω′

i whenever ωi = ω′
i. We also assume that these preferences are measurable,

that is, for each R ∈ R, the set Ti(R) = {ωi ∈ Ωi : R = Rω
i , for some ω−i ∈ Ω−i} is in Σi.

Let π be a measure on Σ. In this setting, this probability measure π should not be interpreted
as a (common) prior belief; rather each of its marginals πi over Σi simply identifies the sets of
signal realizations for firm i that are shy. We further assume that each marginal πi is atomless.
Notice, however, that the assumptions we impose on this probability measure does not rule out
the possibility of some correlation among the realization of preferences of the firms. At the interim
level, after receiving the signal realization ωi, firm i forms a conditional preference Rωi

i over the
set Y−i of Σ−i-measurable functions from Ω−i into Θ. Finally, at the beginning of the game,
each firm i aggregates these conditional preferences in the form of an ex ante preference Ri over
the set Y of Σ-measurable functions from Ω into Θ. Let Pωi

i (respectively, Pi) denote the strict
preference relation derived from Rωi

i (respectively, Ri). We make two consistency assumptions on
the preferences of the firms. The first is a consistency assumption between the ex post and the
interim preferences. It essentially requires that if there are two signals of firm i, ωi and ω′

i, that
reveal the same ex post preferences, then the induced interim preferences, Rωi

i and R
ω′

i
i , cannot

differ. The second assumption is a monotonicity requirement between the interim and the ex ante
preferences. Formally, we assume that the preferences of the firms satisfy:

(1) If Rω
i = Rω′

i , then Rωi
i = R

ω′
i

i .
(2) For any y, y′ ∈ Y , if y(ωi, · ) Rωi

i y′(ωi, · ) for πi-almost every ωi, then y Ri y
′. Moreover,

if additionally y(ωi, · ) Pωi
i y′(ωi, · ) for every ωi ∈ T with πi(T ) > 0, then y Pi y

′.

Finally, we assume that the firms’ preferences are continuous with respect to sequences of strat-
egy profiles that converge in measure. More specifically, we assume that the following continuity
condition holds:

(3) Fix a firm i, and let yn and zn be two sequences in Y that converge in π measure to y and
z, respectively. If yn Ri z

n for every n, then y Ri z.

The matching game is played as follows. After each firm i observes ωi, both sides of the market
meet, and each firm i sends an offer of a remuneration bundle to each worker j ∈ W . Thus the
action space of firm i is BW , where for each ai ∈ BW , the bundle ai(j) is the one offered by firm
i to worker j. For each worker j, given the action profile a ∈ (BW )N , define her set of available
actions as Aj(a) = {(0, 0)} ∪ {(1, a1(j)), . . . , (N, aN (j))}. Worker j simply chooses the (unique)
most preferred option from that set according to her strict preference relation Pj , regardless of
what other workers are doing. The resulting outcome is the one corresponding to the accepted
offers.

Unlike the interaction among workers, the interaction among the firms is strategic, and can be
modeled as a Savage game described by (Ω, A, (Fi,≿i)i∈N ) as follows. In the game played by the
firms, the common state space of the firms is Ω the product space of signal realizations of the firms.
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The action space of each firm is A = BW . The set of strategies Fi available to firm i is the set of Σ-
measurable functions from Ω to A, with the (informational) restriction that fi(ωi, ω−i) = fi(ωi, ω

′
−i)

for every ω−i, ω
′
−i ∈ Ω−i.

Let ϕ : AN → Θ denote the function that maps a given profile of offers from the firms to an
outcome, determined by the decisions of the workers. That is,

ϕ(a) = θ ∈ Θ ,

such that for each worker j in W , θ(j) ∈ Aj(a) and

θ(j) Pj θ
′ for all θ′ ∈ Aj(a) \ {θ(j)} .

In this Savage game, given f, g ∈ F = ×N
i=1Fi, firm i’s preferences are given by

f ≿i g ⇐⇒ ϕ ◦ f Ri ϕ ◦ g .

To show that the Savage game played by the firms has an equilibrium it is enough to show it
satisfies all of the assumptions A1–A7.

Clearly, assumption A1 is satisfied. To see that assumption A2 holds, suppose that (fi, f−i) ∼i

(gi, f−i) ≿i (hi, f−i) for all hi ∈ Fi. Consistency condition (2) implies that ϕ ◦ (gi(ωi), f−i) Rωi
i

ϕ ◦ (fi(ωi), f−i) for πi-almost every ωi. Thus for any event E ∈ Σi, ϕ ◦ (giEfi(ωi), f−i) Rωi
i

ϕ ◦ (fi(ωi), f−i) for πi-almost every ωi. Applying again the consistency condition (2) yields that
ϕ ◦ (giEfi, f−i) Ri ϕ ◦ (fi, f−i), thus (giEfi, f−i) ≿i (fi, f−i), as required. By construction of
the strategy sets Fi, assumption A3 also holds. The continuity assumption A4 is implied by the
continuity requirement (3). To see that Assumption A5 is satisfied, take for each firm i the collection
of events Sm

i = {E ∈ Σi : πi(E) ≤ 1
m}.

In order to check A6, suppose that (fi, f−i) ̸≈j (gi, f−i), and take any hi ∈ Fi. For each
m = 1, 2, . . . take a partition Em of Ωi such that πi(E) = 1

2m for every E ∈ Em. We claim that
there exists an n such that (fi, f−i) ̸≈j (hiEgi, f−i) for every E ∈ En. Suppose not, that is, suppose
that for each m there exists Em ∈ Em such that (fi, f−i) ≈j (hiEmgi, f−i). The sequence of strategy
profiles (hiEmgi, f−i) converges in measure to (gi, f−i). By the continuity assumption (3), it follows
that (fi, f−i) ≈j (gi, f−i), a contradiction. Finally, it is easy to see that A7 holds by defining for
each firm i the set Xi to be the set of strategies that can be written as follows:

fi(ωi) =
∑
R∈R

aRχTi(R)(ωi) ,

with aR ∈ A. That is, Xi is the set of strategies of firm i that are constant on each subset Ti(R)
of Ωi. Since R, the set of ex post preferences defined on Θ is a finite set, it follows that Xi is a
finitely distinguished subset of the set of strategies of firm i. Moreover, for each f ∈ F , there exists
gi ∈ Xi satisfying (gi, f−i) ≿i (fi, f−i), thus A7 is satisfied.

5. Sufficient conditions on recursive payoffs

Our purpose in this section is to study a subclass of Savage games in which a player’s ex ante
evaluation of strategy profiles can be expressed as a recursive function of her interim utility or
payoff. The assumptions that we impose on these games essentially allow for almost arbitrary
assessments by a player of other players’ strategies. The Savage games associated with these games
naturally satisfy A1–A6, and include as special cases Bayesian games, games with multiple priors
that admit a recursive representation, and more generally games with preferences over interim
payoffs satisfying many conditions studied in the literature on decision making under uncertainty.
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Consider a game in interim utility form specified as follows:

((Ωi,Σi), Ai,Vi,Wi)
N
i=1 ,

where (Ωi,Σi) is the measurable space of Player i’s types and Ai is a compact metric space of
Player i’s actions. The space of type profiles Ω = ×N

i=1Ωi has the product algebra Σ = ⊗N
i=1Σi.

Let Fi be the set of all Σi-measurable strategies fi : Ωi → Ai. Player i is associated with an
interim utility function Vi : Ai×F−i×Ωi → R, where Vi(ai, f−i|ωi) is the interim utility for Player i
whose type is ωi if she chooses action ai when the other players are choosing their actions according
to the strategy profile f−i. For any strategy profile f ∈ F we write Vi(f) for the real-valued
function ωi 7→ Vi(fi(ωi), f−i|ωi), which we assume is always bounded and Σi-measurable.

We call a bounded and Σi-measurable real-valued function αi : Ωi → R an interim payoff for
Player i. Player i has ex ante preferences over interim payoffs expressed by the utility function Wi

that associates with each αi an ex ante utility Wi(αi) in R. The ex ante utility Ui(f) of Player i
for the strategy profile f ∈ F is given by means of the recursive form

Ui(f) = Wi ◦Vi(f) .

An equilibrium is a Nash equilibrium of the normal form game (Fi,Ui)
N
i=1.

We make the following decomposition assumption on payoffs, which is essentially the translation
of A2 to this setting.

B1. For every f−i ∈ F−i, and fi, gi ∈ Fi, if Ui(fi, f−i) = Ui(gi, f−i) ≥ Ui(hi, f−i) for every
hi ∈ Fi, then Ui(fiEgi, f−i) = Ui(fi, f−i) for every E ∈ Fi.

We also require that ex ante utility over strategy profiles be continuous with respect to an
atomless measure.

B2. There exists a probability distribution µ : Σ → [0, 1] such that
(1) All the marginal distributions µi : Σi → [0, 1] of µ are atomless.
(2) If fn is a sequence of strategy profiles that converges µ-almost everywhere to f , then Ui(f

n)
converges to Ui(f) for all i.

Let Ā be the disjoint union of the sets Ai endowed with a consistent metric for which it is
compact. For each fi ∈ Fi let f̄i be the Ā-valued function on Ω given by f̄i(ω) = fi(ωi). Define
F̄i = {f̄i : fi ∈ Fi}, which yields the Savage game

(Ω, Ā, (F̄i,≿i)
N
i=1)

where ≿i is given by f̄ ≿i ḡ if and only if Ui(f) ≥ Ui(g) for any f̄ , ḡ ∈ F̄ .

Proposition 5.1. If B1 and B2 hold, then the associated Savage game satisfies A1–A6.

We now explore properties of players’ ex ante attitudes towards interim payoffs as embodied in
Wi, which guarantee that B1 is satisfied, in the presence of B2. Of course, Wi only depends on
a Player i’s own type, so behaviorally the properties that we discuss are purely decision theoretic
embodying the player’s attitudes toward non-strategic uncertainty. In this regard, these properties
can be compared to the generalizations of expected utility in the literature.

Example 5.2 (Dynamically consistent intertemporal payoffs). We say that the payoff Ui is dy-
namically consistent if

Ui(fi, f−i) ≥ Ui(gi, f−i) for every gi ∈ Fi
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implies that

Vi(fi(ωi), f−i|ωi) ≥ Vi(gi(ωi), f−i|ωi) for µi-almost every ωi and every gi ∈ Fi .

That is, after Player i receives partial information about the true state of the world, she will not
want to revise a choice she made based on her ex ante payoff. We show that dynamically consistent
payoffs satisfy B1.

For a given f−i ∈ F−i, take any fi, gi ∈ Fi such that

Ui(fi, f−i) = Ui(gi, f−i) ≥ Ui(hi, f−i) for every hi ∈ Fi .

Dynamic consistency implies that

Vi(fi(ωi), f−i|ωi) = Vi(gi(ωi), f−i|ωi) for µi-almost every ωi .

Let E = {ωi : Vi(fi(ωi), f−i|ωi) ̸= Vi(gi(ωi), f−i|ωi)}, and take any E′ ∈ Σi. Then

Ui(fiE′gi, f−i) = Wi(Vi(fiE′gi, f−i)) = Wi(Vi(fi(E′∩E)gi, f−i)) = Ui(fi(E′∩E)gi, f−i).

Since µi(E) = 0, assumption B2(2) implies that

Ui(fi(E′∩E)gi, f−i) = Ui(gi, f−i) ,

which implies the required result.

Example 5.3 (Strictly monotone utility). Some form of monotonicity is present in nearly all
generalizations of expected utility. Using the measure from B2, if Wi is strictly monotone for the
marginal µi-pointwise ordering of interim payoffs, then B1 holds.

Let µ be the measure from B2. For any interim payoffs write αi ≥ βi if αi(ωi) ≥ βi(ωi) for
µi-almost all ωi. Write αi > βi if αi ≥ βi and αi(ωi) > βi(ωi) over a set of positive µi-measure.
Suppose that Wi is strictly monotone, that is, Wi(αi) ≥ Wi(βi) holds whenever αi ≥ βi and
Wi(αi) > Wi(βi) holds whenever αi > βi. We show that B1 holds.

Take fi, gi ∈ Fi such that Ui(fi, f−i) = Ui(gi, f−i) ≥ Ui(hi, f−i) for every hi ∈ Fi, and E ∈ Σi.
For interim payoffs αi and βi denote by αi ∨ βi and αi ∧ βi the state-wise supremum and infimum
payoffs, and notice that strict monotonicity implies that Vi(fi, f−i)∧Vi(gi, f−i) = Vi(f) µi-almost
everywhere. (Otherwise, for E′ = {ωi : Vi(fi(ωi), f−i|ωi) > Vi(gi(ωi), f−i)|ωi)}, Vi(fiE′gi, f−i) =
Vi(fi, f−i) ∨ Vi(gi, f−i)) > Vi(f) ∧ Vi(gi, f−i), which implies that Ui(fiE′gi, f−i) > Ui(f) ∧
Ui(gi, f−i).) Therefore,

Ui(f) ≥ Ui(fiEgi, f−i) = Wi(Vi(fiEgi, f−i)) ≥ Wi(Vi(fi, f−i)∧Vi(gi, f−i)) = Wi(Vi(f)) = Ui(f) ,

which implies the required result.

Example 5.4 (Supermodular utilities). In the presence of ambiguity aversion, preferences over in-
terim payoffs need not be strictly monotonic though weak monotonicity can usually be guaranteed
(see for example Gilboa (1987)). However, if Wi can be represented by a Choquet integral and
exhibits Schmeidler’s (1989) notion of uncertainty aversion, then Wi will be supermodular (Den-
neberg, 1994, Corollary 13.4, p. 161). In fact, weak monotonicity and supermodularity together
imply that condition B1 holds.

For any interim payoffs αi and βi denote by αi ∨ βi and αi ∧ βi the state-wise supremum and
infimum payoffs. Assume that Wi is non-decreasing in the sense that if αi(ωi) ≥ βi(ωi) for all ωi,
then Wi(αi) ≥ Wi(βi). Now suppose that Wi satisfies supermodularity:

Wi(αi ∨ βi) +Wi(αi ∧ βi) ≥ Wi(αi) +Wi(βi) .
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We show that B1 holds.
Take fi, gi ∈ Fi such that Ui(fi, f−i) = Ui(gi, f−i) ≥ Ui(hi, f−i) for every hi ∈ Fi, and E ∈ Σi.

Notice that supermodularity implies that Wi(Vi(fi, f−i) ∧Vi(gi, f−i)) = Wi(Vi(f)). Therefore,

Ui(f) ≥ Ui(fiEgi, f−i) = Wi(Vi(fiEgi, f−i)) ≥ Wi(Vi(fi, f−i)∧Vi(gi, f−i)) = Wi(Vi(f)) = Ui(f) ,

as required.

Example 5.5 (Decomposable choice). Moving away from explicit monotonicity, we give a “be-
tweenness” condition on preferences over interim payoffs that generalizes Savage’s P2 postulate and
that also satisfies the property B1 above. Consider the decomposable choice property of Grant,
Kajii, and Polak (2000), which in this setting translates to the following condition:

GKP: For any interim payoffs αi, βi and events E ∈ Σi if Wi(αi) > Wi(βiEαi) and Wi(αi) ≥
Wi(αiEβi), then Wi(αi) > Wi(βi).

To see that this condition satisfies B1, take fi, gi ∈ Fi such that Ui(fi, f−i) = Ui(gi, f−i) ≥
Ui(hi, f−i) for every hi ∈ Fi. Notice that if Wi(Vi(f)) = Wi(Vi(gi, f−i)) ≥ Wi(Vi(fiEgi, f−i))
for all E ∈ Σi, then it cannot be the case that Wi(Vi(f)) > Wi(Vi(giEfi, f−i)) for E ∈ Σi.

Example 5.6. [Recursive payoffs with multiple priors] Suppose that Player i has a bounded mea-
surable payoff function

ui : A× Ω → R ,

where the set of action profiles A is endowed with the product Borel algebra and A × Ω also has
the product algebra. Suppose further that for each i, we are given a set Di of probability measures
on Σ. For each πi ∈ Di we write π̂i for its marginal distribution on Σi and for the distribution
conditional on own types we write πi( · | · ) : Σ−i × Ωi → [0, 1], whereby πi( · |ωi) is a probability
distribution on Σ−i interpreted as the conditional probability distribution on ωi ∈ Ωi realizing.10

Player i’s ex ante utilities are of the multiple prior form of Gilboa and Schmeidler (1989) and that
Di satisfies the rectangularity property of Epstein and Schneider (2003):

Ui(f) = inf
πi∈Di

∫
Ω

ui(f(ω), ω) dπi(ω)

= inf
πi∈Di

∫
Ωi

inf
νi∈Di

∫
Ω−i

ui(f(ω), ω) d νi(ω−i|ωi) d π̂i(ωi) .

With this separation we let

Vi(ai, f−i|ωi) = inf
νi∈Di

∫
Ω−i

ui(ai, f−i(ω−i), ω) d νi(ω−i|ωi) ,

for each ai ∈ Ai, f−i ∈ F−i and ωi ∈ Ωi. For any interim payoff αi we let

Wi(αi) = inf
πi∈Di

∫
Ωi

αi(ωi) d π̂i(ωi) .

We make three assumptions.

C1. For each ω ∈ Ω, the function a 7→ ui(a, ω) is continuous.

10The existence of such a conditional distribution is always guaranteed when the underlying probability space is
a Radon space. We note that when each Di is a singleton and we are in a Bayesian game setting, the existence of
equilibrium result in this section does not require the decomposability of priors into marginals and conditionals.



SAVAGE GAMES 19

C2. There is a probability measure µ : Σ → [0, 1] such that
(1) Each π ∈ ∪iDi is absolutely continuous with respect to µ.
(2) The marginal distributions of µ over each Σi are all atomless.
(3) For each i the set Di is weak∗ compact in the dual of L∞(Ω,Σ, µ), the space of real valued

µ-essential bounded (equivalence classes) functions on Ω.

C3. The marginal densities {π̂i : πi ∈ Di} are mutually absolutely continuous.

Epstein and Marinacci (2007) characterize this last condition for the maxmin expected utility
form in terms of a condition of Kreps (1979).

Proposition 5.7. If the game with multiple priors satisfies C1, C2, and C3, then the associated
game in interim utility form satisfies B1 and B2.

6. Location games with recursive payoffs

We now use this convenient recursive structure to investigate two examples of location games
on the sphere. The first is a Bayesian game with payoffs and individual priors that depend on the
full profile of types. In the second game, players have recursive payoffs with multiple priors as in
example 5.6.

Bayesian location game. Consider the N -player Bayesian game

((Ωi,Σi), Ai, ui, νi)
N
i=1 ,

where (Ωi,Σi), the measurable space of Player i’s types, is the unit interval [0, 1]. The action space
Ai of each player is the unit sphere Sn in Rn+1. Player i’s prior νi is a probability density function
νi : Ω → R+, which has full support and is Lipschitz continuous.

Let Bn+1 denote the unit ball of Rn+1. The payoff function ui : A× Ω → R of Player i is given
by

ui(a, ω) = γi ∥Pi(ai, ωi)−Ri(a−i, ω)∥2 + (1− γi) ∥Pi(ai, ωi)−Qi(ωi)∥2

with Lipschitz continuous functions Pi : Ai × Ωi → Sn, Qi : Ωi → Sn, Ri : A−i × Ω → Bn+1, and
0 ≤ γi <

1
2 . We interpret Ri(a−i, ω) as Player i’s idiosyncratic way of calculating the (generalized)

average of the other players’ locations, Qi(ωi) as her most preferred location given her type ωi,
and Pi(ai, ωi) as a (possible, but not required) distortion induced by her type ωi on the degree of
her desire to be close to the other players’ expected location and her own preferred location. In
particular, we allow that Player i may be “social” for some types, for example, Pi(ai, ωi) = −ai,
but may be “anti-social” for other types, for example, Pi(ai, ωi) = ai. We assume that the inverse
correspondence P−1

i : Ai × Ωi → Ai defined by

P−1
i (ai, ωi) = {a′i ∈ Ai : ai = Pi(a

′
i, ωi)} ,

is non-empty valued and Lipschitz continuous with constant K. That is, for all x, y ∈ Ai × Ωi we
have

δ
(
P−1
i (x), P−1

i (y)
)
≤ K∥x− y∥ ,

where δ is the Hausdorff distance between sets in Rn+1.
We shall show that this game has a Bayesian Nash equilibrium (in pure strategies). Clearly, B1

and B2 hold. By Proposition 5.1 we need only show that A7 is satisfied. Fix Player i, a strategy
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profile f−i of other players, and a type ωi ∈ Ωi. For each action ai, let Vi(ai, f−i|ωi) be the interim
expected utility

Vi(ai, f−i|ωi) =

∫
Ω−i

ui(ai, f−i(ω), ω) νi(ω−i|ωi) dλ(ω−i) ,

where λ is the Lebesgue probability measure on [0, 1]N−1 and

νi(ω−i|ωi) =
νi(ω)∫

Ω−i
νi(ω) dλ(ω−i)

is the conditional probability density of νi on Ω−i.
Let

Mi(a−i, ω) = γiRi(a−i, ω) + (1− γi)Qi(ωi) ,

and

mi(f−i|ωi) =

∫
Ω−i

Mi(f−i(ω−i), ω) νi(ω−i|ωi) dλ(ω−i) .

We see that

ui(a, ω) = ∥Pi(ai, ωi)∥2 − 2⟨Pi(ai, ωi),Mi(a−i, ω)⟩
+ γi∥Ri(a−i, ω)∥2 + (1− γi)∥Qi(ωi)∥2 ,

where for any x, y ∈ Rn+1, ⟨x, y⟩ ∈ R is the inner-product. Thus

Vi(ai, f−i|ωi) = ∥Pi(ai, ωi)−mi(f−i|ωi)∥2 + ∥mi(f−i|ωi)∥2

+

∫
Ω−i

γi∥Ri(f−i(ω−i), ω)∥2 νi(ω−i|ωi) dλ(ω−i) + (1− γi)∥Qi(ωi)∥2.

Noting that ∥mi(f−i|ωi)∥ ≥ 1− 2γi > 0, define the point

qi(f−i|ωi) =
−mi(f−i|ωi)

∥mi(f−i|ωi)∥
,

which is the point on the sphere that is farthest away from mi(f−i|ωi).
Any ai ∈ Ai satisfying qi(f−i|ωi) = Pi(ai, ωi), equivalently, ai ∈ P−1

i (qi(f−i|ωi), ωi), maximizes
Vi(·, f−i|ω−i). In particular, any strategy f∗

i satisfying

Pi(f
∗
i (ωi), ωi) = qi(f−i|ωi) equivalently f∗

i (ωi) ∈ P−1
i (qi(f−i|ωi), ωi)

for all ωi is a best response for Player i to f−i.
Now ω 7→ νi(ω−i|ωi) is a Lipschitz continuous function because the prior νi is a Lipschitz

continuous function that is bounded away from zero. Therefore, ωi 7→ mi(f−i|ωi) is also a Lipschitz
continuous function with Lipschitz constant K ′ that is independent of the choice of f−i because
of the Lipschitz continuity of Qi and Ri. This in turn implies that ωi 7→ qi(f−i|ωi) is a Lipschitz
continuous function with Lipschitz constant K ′′, independent of the choice of f−i, because γi <

1
2 .

Finally, we conclude that the closed non-empty valued correspondence ωi 7→ P−1
i (qi(f−i|ωi), ωi) is

Lipschitz continuous with some constant K∗ that is the same for all f−i. By the theorem of Kupka
(2005), this correspondence with one dimensional domain has a K∗-Lipschitz continuous selection
f̂i, which is a best response to f−i. Let Xi be the family of K∗-Lipschitz continuous strategies for
Player i. By the Arzelà-Ascoli compactness theorem assumption A7 is satisfied.
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Location game with multiple-priors. Consider another N -player location game in which once
again Player i’s type space Ωi is [0, 1] and her action space Ai is the unit sphere Sn. The player’s
payoff function ui : A× Ω → R is

ui(a, ω) =

{
∥ai −Mi(a−i, ω)∥2, if minj≠i ωj ≤ 1

2 ,

1, otherwise ;

where Mi : A−i × Ω → Sn is a Lipschitz continuous function. If the type of at least one of the
players other than i is less than or equal to one-half, that is Low, then Player i wishes to locate on
the circle as far away as possible from Mi(a−i, ω), and may get a payoff greater than one. However,
if the type of every player aside from i is greater than a half, that is High, then Player i has a
guaranteed payoff 1.

We assume the preferences of Player i over strategy profiles take the maxmin expected utility
or “multiple priors” form of Gilboa and Schmeidler (1989). For each i, let λi be the Lebesgue
distribution on Ωi, and let λ be the product distribution on Ω. Let D̂i be a weakly compact set of
probability density functions on Ωi in which each ν̂i in D̂i is mutually absolutely continuous with
λi. Let µ−i : Ω−i × Ωi → R+ and ν−i : Ω−i × Ωi → R+ be functions for which ωi 7→ µ−i( · |ωi)
and ωi 7→ ν−i( · |ωi) are mappings to conditional probability densities on Ω−i. We assume that for
each fixed ω−i the function µ−i is Lipschitz continuous in ωi. We also assume that if ω−i is in the
support of µ−i( · |ωi), then at least one player is of Low type. We also assume that for each ωi, the
support of ν−i( · |ωi) is a subset of ( 12 , 1]

N−1 ⊆ Ω−i.
Now take Di to be the following set of probability densities defined on Ω:

Di = {ω 7→ πi(ωi)(αµ−i(ω−i|ωi) + (1− α)ν−i(ω−i|ωi)) : πi ∈ D̄i, 0 ≤ α ≤ 1} .

The ex ante utility of Player i for the strategy profile f ∈ F is

Ui(f) = min
π∈Di

∫
Ω

ui(f(ω), ω)π(ω) dλ(ω) .

We show that this game has an equilibrium. Since Di satisfies the rectangularity property this is
a game in interim form satisfying C1, C2, C3. By Proposition 5.7 we need only show that A7 is
satisfied.

Since Di satisfies the rectangularity property it follows if ωi is realized for Player i then the
player wants to maximize the interim utility which in this case is given by

Vi(ai, f−i|ωi) = min
π−i∈{µi(·|ωi),νi(·|ωi)}

∫
Ω−i

ui(ai, f−i(ω−i), ω)π−i(ω−i) dλ−i(ω−i) .

For each ωi and f−i let mi(f−i|ωi) be the point

mi(f−i|ωi) =

∫
Ω−i

Mi(f−i(ω−i), ω)µi(ω−i|ωi) dλ(ω−i) .

There is a K that is independent of f−i such that ωi 7→ mi(f−i|ωi) is K-Lipschitz continuous.
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Fixing ωi and f−i we notice that for any ai we have∫
Ω−i

ui(ai, f−i(ω−i)µi(ω−i|ωi) dλ(ω−i)

=

∫
Ω−i

∥ai −Mi(f−i(ω−i), ω)∥2µi(ω−i|ωi) dλ(ω−i)

≥ 1 =

∫
Ω−i

ui(ai, f−i(ω−i)νi(ω−i|ωi)) dλ(ω−i)

if and only if
∥ai −mi(f−i|ωi)∥2 ≥ ∥mi(f−i|ωi)∥2.

But there is always a point in Sn satisfying ∥ai−mi(f−i|ωi)∥ ≥ ∥mi(f−i|ωi)∥. Therefore, the value
Vi(ai, f−i|ωi) of such a point ai is one. But the maximum of Vi(ai, f−i|ωi) is also one. From this
we conclude that ai maximizes Vi(ai, f−i|ωi) if and only if ∥ai −mi(f−i|ωi)∥ ≥ ∥mi(f−i|ωi)∥. In
particular, the maximizers of Vi have the following form:

Bi(f−i|ωi) = arg max
ai∈Ai

Vi(ai, f−i|ωi) = {ai ∈ Ai : ⟨ai,mi(f−i|ωi)⟩ ≤ 1
2} ,

for each ωi and f−i.
This is an upper hemicontinuous correspondence from [0, 1] to Sn. That is, there is a K∗

independently of f−i such that

δ(Bi(f−i|ωi), Bi(f−i|ω′
i)) ≤ K∗|ωi − ω′

i| ,
for all ωi, ω

′
i, where δ is the Hausdorff distance between sets. By the theorem of Kupka (2005), this

correspondence has a K∗-Lipschitz continuous selection f̂i. Once again applying the Arzelà-Ascoli
theorem yields the desired result.

7. Concluding remarks and related work

We conclude with a discussion of some related models as well as issues arising from the results
we have derived in the framework of Savage games.

Strategic interaction between non-expected utility maximizers. The literature on mod-
eling strategic interactions between individuals whose preferences may not conform to expected
utility theory has mostly focused on normal-form games of complete information. Hence the only
uncertainty the players face is with regard to the strategy choices of their opponents. Azrieli and
Teper (2011) provide a very nice summary of this literature, comparing and contrasting the different
approaches that have been taken.11

In their paper, however, Azrieli and Teper consider a class of games with incomplete information
where the payoff of a player can depend on the state of nature as well as the profile of actions
chosen by the players.12 Each player can choose any state-contingent randomization over her set of
available actions that is measurable with respect to her information which in turn is characterized
by a partition of a finite state space. They allow for players whose ex ante preferences over strat-
egy profiles are generated by (fairly) arbitrary functionals defined on the state-contingent payoffs
associated with each strategy profile. Assuming these functionals satisfy standard continuity and

11Rather than reproduce their discussion here we refer the interested reader to section 1.2 on page 311 of their
paper.

12Kajii and Ui (2005) also model a class of games with incomplete information for the particular class of preferences
that admit a multiple prior representation.
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monotonicity properties, their main result is that an ex ante equilibrium exists in every game if
and only if these functionals are quasi-concave.

By enriching the strategy space so that players can choose (consistent with their respective in-
formation) state-contingent randomizations over their actions, allows Azrieli and Teper to establish
the existence of an ex ante equilibrium in an incomplete information game with a finite state space,
just as Anscombe and Aumann (1963) were able to characterize the class of preferences that admit
a subjective expected utility representation in a setting with a finite state space. We note, however,
that this is achieved at the cost of assuming that players have access to objective randomizing
devices, a significant departure from the Savage approach in which all uncertainty is subjective.

Azrieli and Teper also note that the quasi-concavity of the functionals that generate the players’
ex ante preferences over strategy profiles, can readily be related to the property of ambiguity aver-
sion in the Anscombe and Aumann two-stage setting where the subjective uncertainty is resolved
first followed by an objective randomization over the final consequences. However, as Eichberger
and Kelsey (1996) argue, there is no natural counterpart interpretation in Savage’s setting of purely
subjective uncertainty. Hence we do not find it surprising that for any Savage game with which
there is associated a game in interim utility form, properties B1 and B2 neither imply nor require
the quasi-concavity of the ex ante utility Wi from section 5 above.

Universal state space. One question that we do not attempt to answer in this paper is whether
it is possible to construct a state space that is a comprehensive representation of the uncertainty
faced by players, in the sense of Mertens and Zamir (1985) and Brandenburger and Dekel (1993).
We note that Epstein and Wang (1996) do provide such foundations for a setting with purely
subjective uncertainty and where the preferences of players need not conform to subjective expected
utility theory and so may exhibit non-neutral attitudes toward ambiguity. However, Epstein and
Wang’s setting does not allow for interdependent preferences. Bergemann, Morris, and Takahashi
(2011) construct a universal type space for players with interdependent preferences, but as their
framework explicitly involves objective randomization, it is not clear to us how their analysis could
be conducted in a Savage setting of purely subjective uncertainty. Finally, Di Tillio (2008) allows
for more general preferences, albeit in a setting in which there is only a finite number of outcomes.

Rationalizability. It is also not clear to us what is the appropriate notion of rationalizability
in the framework of Savage games. There is an extensive literature that provides foundations for
equilibrium in terms of rationalizable behavior, see for example Brandenburger and Dekel (1987)
in the context of subjective uncertainty, Tan and Werlang (1988) and Börgers (1993). However, in
many of these papers, rationality is expressed in terms of “state-independent expected utility.”13

To allow for state-dependent ordinal preferences, an alternative notion of rationalizability is
needed. As noted by Morris and Takahashi (2012), rationalizability defined in terms of ordinal
preferences is invariant to the choice of state space, unlike rationalizability defined in terms of
expected utility. However, Morris and Takahashi’s notion of rationalizability requires explicit ran-
domization of the kind implied by Anscombe–Aumann acts, which is not available in our setting.
Epstein (1997) investigates rationalizability in a setting where strategies are analogs of Savage style
acts, nevertheless he rules out state-dependent preferences and restricts the analysis to finite normal
form games.

13An exception is Tan and Werlang (1988), who start with a Bayesian game in which players have a state-
dependent subjective expected utility function.
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Purification of mixed strategies. We have entirely avoided any assumption on the independence
or near independence of player information or types or payoffs. Indeed, in our Bayesian game
example, types are statistically dependent via arbitrary Lipschitz-continuous probability density
functions. This is in stark contrast with the purification results that follow the classical work of
Dvoretzky, Wald, and Wolfowitz (1950), Radner and Rosenthal (1982) and Milgrom and Weber
(1985), and related literature.14 One interpretation of this difference is that while decomposability
arguments are also at the heart of purification techniques, those require purification of objectively
randomized equilibria. The present paper highlights how our use of the decomposition property
can be interpreted as purification of a purely subjective kind.

An important open question is whether it is possible to obtain our results even for standard
Bayesian games with interdependent priors using the purification techniques of the extant literature.
That literature has focused on the existence of pure-strategy equilibrium in Bayesian games in which
information is diffuse. The usual approach is to identify conditions on the information structure of
the game that allows us to find a profile of pure strategies that is payoff equivalent to any given
equilibrium (randomized) strategy profile. To the best of our knowledge, the techniques that have
been developed so far rule out interdependent payoffs and require independent distributions of
types.

Appendix A. Proofs

Proof of Proposition 3.1. Suppose that f ∼i (gi, f−i) ≿i (hi, f−i) for every hi ∈ Fi. In particular,
f ∼i (gi, f−i) ≿i (giEfi, f−i) for every E ∈ Fi. For any E ∈ Fi we have f ≿i (giΩ\Efi, f−i), thus,
by P2, fiΩ\Egi, f−i ≿i (gi, f−i) ∼i f . □
Proof of Proposition 3.2. It is immediate that Fi contains ∅ and Ω. The other two conditions are
obtained by noting that

giE\E′fi = fiE′(giEfi) ,

and
giE∪E′fi = giE(giE′fi) .

With this, A3 guarantees that the countable union of events is an event. □
Proof of Corollary 3.3. Let σ(Fi) be the smallest σ-algebra of subsets of Ω for which each strategy
fi ∈ Fi is measurable. Clearly, σ(Fi) ⊆ Σi ⊆ Fi. Pick E ∈ Fi. Because |A| ≥ 2, there are fi, gi ∈ Fi

such that E = {ω : giEfi(ω) ̸= fi(ω)}, which is in σ(Fi). Thus, Σi = Fi and A3 holds. □
Proof of Proposition 3.6. Clearly, the empty set is in Ni. Let E ∈ Ni and E′ ∈ Fi such that
E′ ⊆ E. If E′ /∈ Ni, then there are f ∈ F , gi ∈ Fi and j ∈ N satisfying

(giE′fi, f−i) ̸≈j f .

But then
((giE′fi)Efi, f−i) = (giE′fi, f−i) ̸≈j f ,

which is a contradiction, because E is shy for Player i.
Furthermore, if E,E′ ∈ Ni, then for any gi ∈ Fi, by transitivity of ≈j , we have

(giE∪E′fi, f−i) = (giE′(giEfi), f−i) ≈j (giEfi, f−i) ≈j f ,

14Other results include Balder (1988), Khan and Sun (1995), Khan, Rath, and Sun (2006), Loeb and Sun (2006),
Fu, Sun, Yannelis, and Zhang (2007), Fu (2008), Podczeck (2009), Loeb and Sun (2009), Khan and Rath (2009),
Wang and Zhang (2012), and Greinecker and Podczeck (2013). Using the same techniques, it is possible to show
existence of pure equilibrium when there is a continuum of agents—see Schmeidler (1973), and Mas-Colell (1984).
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which tells us that E ∪ E′ ∈ Ni. Finally, by A3 and A4, for any increasing sequence of shy events
En, the union E is an event, and it must be shy for Player i. □

Proof of Proposition 3.7. We can assume without loss of generality that each Sm
i also has the

the property that if E′, E ∈ F and E′ ⊂ E ∈ Sm
i , then E′ ∈ Sm

i .
Fix Sm

i . Denote by E ⊖ E′ the symmetric difference of any two sets E,E′ ⊆ Ω. Let

Rm
i = {E ∈ Ri : E ⊖ E′ /∈ Ni for all E′ ∈ Sm

i } .

Proposition A.1. The following hold true:
(1) If E ∈ Rm

i , then E /∈ Sm
i .

(2) ∪mRm
i = Ri.

(3) If En is an increasing sequence of events whose union E is in Rm
i , then eventually En is

in Rm
i .

Proof. (1) is obvious because the empty set is in Ni.
Turning to (2). Suppose that E ∈ Ri. Suppose by way of contradiction that E /∈ Rm

i for all m.
E is associated with Em ∈ Sm

i such that Dm = E⊖Em ∈ Ni. Let D = ∪mDm, which is in Ni and
we see that E \D ⊆ Em for all m. Thus, E \D ∈ Sm

i for all m. This implies that E \D is in Ni.
Thus, E ∈ Ni, which is a contradiction.

For (3) because Ni is a σ-ideal, eventually En is in Ri. Now if En /∈ Rm
i then there exists a

null event D such that En ∩D is in Sm
i for all m. By the closedness of Sm

i E ∩D ∈ Sm
i which is

impossible. □

If all Rm
i are empty, then all events are null and the proposition is true trivially. So we can

assume that Rm
i in not empty for all m.

Proposition A.2. For each m there is c > 0 such that

inf
E∈Ni

max
ω∈Ω

(
χΩ\E

n∑
k=1

αkχEk(ω)

)
≥ c

for any α1, . . . , αK ≥ 0 and
∑K

k=1 α
k = 1.

Proof. There exists a constant c > 0 such that for any finite sequence E1, E2, . . . , En in Rm
i we

have
max
ω∈Ω

1

n
|{1 ≤ k ≤ n : ω ∈ Ek}| > c .

This implies that

max
ω∈Ω

1

n

n∑
k=1

χEk(ω) > c

where χE is the characteristic function of E. This in turn implies that

max
ω∈Ω

n∑
k=1

rk∑n
k=1 r

k
χEk(ω) = max

ω∈Ω

1∑n
k=1 r

k

n∑
k=1

rkχEk(ω) > c ,

for every rk ∈ N, k = 1, . . . , n, satisfying rk > 0 for some k. We conclude that

max
ω∈Ω

n∑
k=1

αkχEk(ω) ≥ c ,
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for any convex combination α1, α2, . . . , αn ≥ 0,
∑n

k=1 α
k = 1. Therefore,

(1) inf
E∈Ni

max
ω∈Ω

(
χΩ\E

n∑
k=1

αkχEk(ω)

)
= inf

E∈Ni

max
ω∈Ω

n∑
k=1

αkχEk\E(ω) ≥ c ,

for any convex combination. □

Let L∞(Fi|Ni) be the ordered vector space of all Ni-equivalence classes of Fi-measurable bounded
functions from Ω to R. That is, fi : Ω → R is in L∞(Fi|Ni) if it is Fi-measurable and bounded,
and gi : Ω → R is in the equivalence class [fi] if {ω : fi(ω) ̸= gi(ω)} is in Ni.

For each fi ∈ L∞(Fi|Ni), let

∥fi∥∞ = inf
E∈Ni

sup
ω∈Ω

|χΩ\Efi(ω)| ,

By Proposition 3.6 Ni is a σ-ideal of Fi. Thus ∥ · ∥∞ is a norm on L∞(Fi|Ni), and with this norm
the space is a Banach space. Furthermore, L∞(Fi|Ni) has a canonical ordering whereby fi ≥ gi
if {ω : gi(ω) > fi(ω)} is null. With this vector ordering the Banach space L∞(Fi|Ni) is a Banach
lattice with a positive cone L+

∞(Fi|Ni) that contains any constant function c = cχΩ, c > 0, in its
interior.

We list the following result for convenience.

Proposition A.3. There exists c > 0 such that the for any f convex hull Cm in L∞(Fi|Ni) of
{χE : E ∈ Rm

i } we have ∥f∥∞ ≥ c. In particular, Cm is disjoint from 1
2c− L+

∞(Fi|Ni).

A separating hyperplane argument now tells us that there is a continuous linear functional πm
i

on L∞(Fi|Ni) separating the two sets. Because zero is an interior point of one set we see that it is
non-negative on L+

∞(Fi|Ni) and that for some dm > 0 we have πm
i (fi) > dm for all fi ∈ Cm.

We can therefore consider πm
i as a finitely additive measure on Fi. It gives a value of zero to

each E ∈ Ni and greater than dm for each E ∈ Rm
i . By the Hewitt-Yosida decomposition there is

a countably additive measure πmc
i and a purely finitely additive measure πmf

i such that

πm
i = πmc

i + πmf
i .

Pick E ∈ Rm
i . Because πmf

i is purely finitely additive, for dm > α > 0 there is an increasing
sequence En ∈ Fi, ∪nE

n = E, and
lim
n

πmf
i (En) ≤ α .

But En ∈ Rm
i eventually for n large enough. From this we conclude that for such n

πmc
i (E) ≥ πmc

i (En) = πm
i (En)− πmf

i (En) ≥ γm − α > 0 .

Normalize each πmc
i making it a probability measure and consider the probability measure:

πi =
1

2m

∞∑
m=1

πmc
i (E) .

We see that πi(E) > 0 for each E ∈ R = ∪mRm
i . That is, πi is the required measure. □

Proof of Proposition 3.8. Suppose that E ∈ Ri. For some player j ∈ N , some strategy profile
f ∈ F , and some strategy gi ∈ Fi we have (giEfi, f−i) ̸≈j f . Thus, there exists a sequence
{E1, . . . , Ek} ⊆ Fi, ∪kE

k = Ω, satisfying (fiEk(giEfi), f−i) ̸≈j f for all k. But fiEk(giEfi) =
giE\Ekfi. Thus, for all k the event E \Ek is in Ri. Also, because Ni is an ideal there must be some
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k∗ such that Ek∗ ∩E is relevant for Player i. The relevant events E \Ek∗
and Ek∗ ∩E are disjoint

and their union is E. □

Proof of Proposition 3.9. We need only show that (2) implies (1). Let πi be from condition
(2). If πi(Ω) = 0, then we are done, since there are no relevant events. Otherwise, without loss of
generality we can assume πi(Ω) = 1.

For each m, define the set
Sm
i = {E ∈ Fi : πi(E) ≤ 1/m} .

Notice that each Sm
i is closed and note that ∩mSm

i ⊆ Ni.
Now let E1, E2, . . . , En is a finite sequence in Fi not in Sm

i . We have

max
ω∈Ω

1

n
|{1 ≤ k : ωi ∈ Ek}| = 1

n
max
ω∈Ω

n∑
k=1

χEk

≥ 1

n

∫
Ω

n∑
k=1

χEk(ω) dπi(ω)

=
1

n

n∑
k=1

πi(E
k)

≥ 1

n
(n

1

m
) =

1

m
.

This shows that A5 holds.
We show that A6 also holds. Suppose that (gi, f−i) ̸≈j f . Suppose by way of contradiction that

for each m there is Em satisfying πi(E
m) ≤ 1

m such that (hiEmgi, f−i) ≈j f . Noting that χEm

converges to zero in πi-measure we can move to a subsequence such that χEm converges πi-almost
surely to zero. But zeros of πi are all null for Player i. Thus, by A4 (gi, f−i) ≈j f , which is a
contradiction. □

A fixed point theorem. We begin with a statement of a fixed point theorem and apply it to
prove Theorem 3.11. For a complete proof of the fixed point theorem used in this subsection, please
refer to Meneghel and Tourky (2013).

Let (S,Σ, µ) be an atomless probability space and let T be a topological space. Let L(S, T ) be
the set of all functions, not necessarily measurable, from S to T . Endow L(S, T ) with the topology
of pointwise convergence.

A set-valued (possibly empty valued) mapping B : F ↠ F is a decomposable mapping if its
domain F and values B(f), for all f ∈ F , are decomposable sets. A decomposable mapping B is
µ-sequentially closed graphed if the following hold:

(1) If µ(E) = 0 and g ∈ B(f), then hEg ∈ B(f) and g ∈ B(hEf) for all h ∈ F .
(2) F is sequentially closed in L(S, T ).
(3) B has a sequentially closed graph in F × F .

A fixed point of B is a function f ∈ F satisfying f ∈ B(f).

Theorem A.4 (Corollary 2.3, Meneghel and Tourky (2013)). Let B : F ↠ F be a decomposable µ-
sequentially closed-graphed mapping. If for a compact and metrizable X ⊆ F we have X ∩B(f) ̸= ∅
for each f ∈ F , then B has a fixed point.
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Proof of Theorem 3.11. Assume that A7 holds.
For each i let Si = Ω and Ti = A. Each f ∈ F is can be considered a function from S to T

whereby
f(s1, . . . , sN ) = (f1(s1), . . . , fN (sN )) .

For each i consider the atomless measure space (Si,Fi, πi) from Proposition 3.9. We will assume
that at least one player has a relevant event and that all non-zero πi are probability measures. Let
F = ⊗N

i=1Fi be the tensor product. Each E in F that is not the empty set is of the form

(E1, E2, . . . , EN ) ,

where Ei ∈ Fi for each i. Now if f, g ∈ F , then

gEf(s1, . . . , sN ) = (g1E1f1(s1), . . . , gNEN
fN (sn)) ,

which is in F .
Let µ : F → [0, 1] be the probability measure given by

µ(E) =
1

N

N∑
i=1

πi(Ei) .

This, is an atomless measure and if µ(E) = 0, then each Ei is null for Player i. For each f ∈ F , let

B(f) = {g ∈ F : gi is a best response to f−i for all i} .
Notice that if µ(E) = 0 and g ∈ B(f) we have hEg ∈ B(f) and g ∈ B(hEf).

Now our sets Xi are compact and metrizable in the topology of pointwise convergence. Therefore,
their product X ⊆ F is compact and metrizable in the same topology. Assume first that there is
only one player. Clearly, an equilibrium exists because the player maximizes her preferences in the
compact and metrizable set X. Now suppose that there are two or more players. By assumption
A7, the sequentially closed, decomposable set X̃i is a subset of Fi for each i. Let X̃ be the product
of Xi, which is sequentially closed and decomposable once again. Let B̃ : X̃ → X̃ be the restriction
of B to X̃. We see that B is a decomposable mapping that is also µ-sequentially closed graphed.
Applying Theorem A.4 gives us the required equilibrium. □

Proof of Proposition 5.1. Suppose that f ∈ F and gi ∈ Fi satisfy

Ui(f) = Ui(g) ≥ Ui(hi, f−i)

for all hi ∈ Fi. By B1 this means that

Ui(giEfi, f−i) = Ui(f)

for every E ∈ Σi. Thus, A2 holds. That A3 is satisfied is a consequence of Corollary 3.3. Now Ui

is continuous for pointwise convergent sequences of strategy profiles by B2. So A4 holds.
If A has less than two points, then all events are null and A5 and A6 hold trivially. If they have

two or more points, then by Corollary 3.3 Σ̄i = Fi. Now the restriction of µi to Σ̄i is atomless and
if µ(E) = 0, then E is strategically null for Player i by (2) of B2. By Proposition 3.9 assumptions
A5 and A6 hold. □

Proof of Proposition 5.7. Consider the associated game in interim form. Clearly, B2 holds. For B1
let αi, βi be the two interim payoffs. Choose µ∗

i ∈ Di in

arg min
µi∈Di

∫
Ωi

αi ∨ βi d µ̂i(ωi) .
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We see that

Ui(αi) ≥ Ui(αi ∨ βi) ≥
∫
Ωi

αi(ωi) d µ̂
∗
i (ωi) ≥ Ui(αi) .

Thus, it must be the case that αi and αi∨βi agree µ∗
i -almost surely. Similarly, βi and αi∨βi agree

µ∗
i -almost surely. This implies that αi and βi agree almost surely for all µi ∈ Di. This implies that

Ui(βiEαi) = Ui(αi) for all Ei ∈ Σi, as required. □
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