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We study a multiperson bargaining problem with general risk preferences through
the use of Shaked’s game of cycling offers with exogenous breakdown. If preferences
are “smooth,” then as the risk of breakdown vanishes, the limiting outcome is one in
which bargainers are equally marginally bold; where a bargainer’s marginal boldness
measures his willingness to risk disagreement in return for a marginal improve-
ment in his position. Under smoothness, any (ordinal-)Nash solution is an equally
marginally bold outcome. However, unlike the concept of the (ordinal-)Nash solu-
tion, a unique equally marginally bold outcome exists in natural cases—in particular,
if all bargainers have risk-averse preferences of the rank-dependent expected util-
ity type. For these preferences, the equally marginally bold outcome maximizes a
“bargaining power”-adjusted (asymmetric) Nash product where the degree of asym-
metry is determined by the disparity in the marginal valuation of certainty among
bargainers. Journal of Economic Literature Classification Numbers: C72, C78, D81.
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1. INTRODUCTION

Bargainer’s attitudes toward risk have long played a central role in many
formal theories of bargaining. The notion that bargainers bear in mind
the risk of a breakdown in negotiations has been recognized at least since
Zeuthen (1930), but it was Nash’s (1950, 1953) approach which caught on
and held sway in economic modeling. However, expected utility theory,
upon which Nash’s analysis is built, has been challenged on introspec-
tive, experimental, and empirical grounds.1 In response, several papers
have recently examined generalizations of expected utility in the context
of bargaining.2 These works have been based, to some extent, on the use
of suitable adaptations of Nash’s orginal axioms for the bilateral bargain-
ing problem. Although such axiomatizations are appealing, we doubt that
the Nash solution would have made such inroads into economics simply
on the strength of Nash’s original abstract model and the axioms that he
postulated. The overwhelming preference expressed by economists for the
Nash solution in bargaining applications over other possible solutions—like
the Kalai–Smorodinsky solution or the egalitarian solution—arises, we con-
tend, from the support offered by more detailed strategic models in what
we dub the Sutton program (1986), which calls (in the bilateral case) for
the use of the alternating-offers game as a testing ground for bargaining
axioms.
Our starting point in this paper is to note that the Sutton program may

be used not to simply support an appealing set of axioms, but also to
explore possible extensions of the Nash solution to a more general family
of risk preferences, and to do that in a multiperson or multilateral frame-
work. To carry out this extension, we follow a simple generalization of the
alternating-offers protocol suggested by Shaked (a textbook reference is
Osborne and Rubinstein, 1990 p. 63). In Shaked’s game, bargainers rotate
in making proposals, and the requirement for agreement is unanimity. If an
offer is rejected, then there is a risk of breakdown of negotiations, yielding
the disagreement outcome.
The connection between the interactive (or purely game-theoretic) and

the decision-theoretic sides of this model is in itself worthy of some dis-
cussion and is a major contribution of this paper. In essence, any varia-
tion of the alternating-offers protocol is a story of temporal monopoly; an
agreement is seen as the outcome of a dynamic game in which individuals

1See, for instance, Machina (1987) and the references therein.
2The seminal reference is Rubinstein, Safra, and Thomson (1992), which in turn has led to

follow-up papers by Grant and Kajji (1994, 1995), Valenciano and Zarzuelo (1994), Hanany
and Safra (2000) and Houba, Tieman, and Brinksma (1998). A somewhat different approach
is taken in Safra and Zilcha (1993).
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are each given in turn the right to ask their opponents to accept a sure
payoff, or bear the risk of ending up with nothing. This choice problem
is also the basis for a class of systematic violations of expected utility the-
ory known as the certainty effect, or common ratio effect.3 The fact that
individuals “overvalue” outcomes that are considered certain relative to
outcomes that are merely probable was first recognized by Allais (1953)
and is perhaps the most systematically observed violation of the expected
utility theory. Exploiting this relationship, we are able to (i) characterize
stationary subgame-perfect equilibrium offers in Shaked’s game for Allais-
type preferences, and (ii) show that as the risk of breakdown vanishes, the
limit of stationary subgame offers is an outcome in which all bargainers are
equally marginally bold, where a bargainer’s marginal boldness measures his
willingness to risk disagreement in return for a marginal improvement in
his position. This result offers a linkage between the degree of departure
from expected utility and the outcome of bargaining. Indeed it is bargain-
ers’ attitude toward small risks—in particular, a measure of “probabilistic”
risk aversion—which plays the major role in determining their bargaining
power.
There are, of course, prices to pay. In this paper, bargainers have general

preferences over simple lotteries, and compound lotteries are reduced by
multiplying through the probabilities. Thus, at any stage of the rotating-
offers game, bargainers care only about the distribution over outcomes
induced by every possible continuation of the game, and not about the
timing of resolution per se. In particular, our assumptions are incompat-
ible with Machina’s (1989) formulation of dynamic behavior for nonex-
pected utility decision makers, in which ex post preferences are derived
from ex ante preferences by conditioning on any borne risk. They are also
incompatible with Segal’s (1990) approach, in which preferences are time
separable but compound lotteries are not ranked by their induced distri-
bution over final outcomes. In contrast, Karni and Safra’s (1989) “behav-
iorally consistent” strategy for dealing with dynamic choice does fit into our
framework. We find it reassuring that Karni and Safra’s theory agrees with
recent empirical findings on dynamic versions of common ratio problems
that reject the approaches by Machina and Segal (see Cubitt, Starmer, and
Sugden, 1998).
Another price is the differentiability assumption. As the name suggests,

equally marginal boldness is a tangency condition that is not well defined
without the differentiability of the function representing the bargainers’ risk
preferences over the class of binary lotteries obtained by mixing the dis-
agreement outcome with any other single outcome. We contend, however,

3See Camerer (1995) for a review of such findings.
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that the gain from the differentiability assumption far exceeds the cost,
since practically all specific nonexpected utility functionals that have been
used in theoretical and empirical research are differentiable in this sense.
The plan of this paper is as follows: After we set up the model in

Section 2, in Section 3 we characterize the set of stationary subgame-perfect
equilibrium in Shaked’s game. We devote Section 4 to an exploration of
the concept of marginal boldness. In Section 5 we present the conver-
gence result. Finally, in Section 6 we explore the relation among equally
marginally bold outcomes and generalizations to the multiperson case of
the outcomes proposed by Rubinstein, Safra, and Thomson (1992) and by
Safra and Zilcha (1993).

2. BASIC SETUP

There is a perfectly divisible object of size 1. There are I� I ≥ 2, bargain-
ers who negotiate over how the object should be divided. Denote by xi ≥ 0
the share that bargainer i receives. The set of feasible divisions, or the set
of outcomes, is denoted by X, with its generic element x = �x1� � � � � xI�;
that is, X = �x � ∀i� xi ≥ 0�

∑I
i=1 x

i = 1�. Denote by � the interior of X.
There is a given designated disagreement outcome, denoted by D. The

set X ∪ �D� is endowed with the natural σ-field, where the point D is
regarded as a discrete point. Denote by � the set of lotteries (probability
measures) with finite support over X ∪ �D�. An elementary lottery is one
whose support consists of at most one outcome from X and the disagree-
ment outcome D. We denote by px the elementary lottery that yields the
outcome x with probability p. The set of elementary lotteries is denoted
by �e.
Bargainer i has a continuous preference relation 
i on � . Throughout

the paper, we keep the set of feasible divisions X and the disagreement
outcome D fixed, so a bargaining problem is naturally identified with a
collection of preferences �
i�i=Ii=1. We assume that the object is “private”
(in the sense that bargainer i is concerned only with his share of the pie)
and “desirable” (so that preferences 
i are monotone with respect to the
relation of first-order stochastic dominance, with strict dominance on �e.)
We also assume that each bargainer views D as the least desirable. Thus,
from bargainer’s i point of view, D may be identified with (any) x in X for
which xi = 0.4 Since the object is private, we represent agent i’s preferences
over �e by a continuous function V i � �0� 1� × �0� 1� → � given by the rule

4There is an analogy between our bargaining setting and a pure exchange economy with a
public good, p, and a private good, x. Any elementary lottery px induces marginal distribu-
tions �p� x1�� � � � � �p� xI� that can be interpreted as bargainers’ consumption bundles derived
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V i�p� x� ≥ V i�q� y� if and only if px 
i qy for any x� y with xi = x� yi = y.
We normalize V i so that V i�p� 0� = 0 for all p and V i�1� 1� = 1. Notice
that such V i is unique up to monotonic transformation.
Later in the paper we assume that we can pick a function V i as above

for each i satisfying:

DUEL (differentiable utility over elementary lotteries): The restriction
of 
i to �e has a twice continuously differentiable representation V i satis-
fying (i) V ip�p� 0� = 0 for all p in �0� 1� and V ip�p� x� > 0 for all p in �0� 1�
and all xi in �0� 1�, and (ii) V ix�0� x� = 0 for all x in �0� 1�, and V ix�p� x� > 0
for all p in �0� 1� and all x in �0� 1�.5

Notice that condition DUEL is weak enough to accommodate preferences
of the weighted utility class introduced by Chew (1983), of the class which
Gul’s (1991) dubbed “disappointment averse” (DA), and also preferences
of the “rank-dependent” family, including Quiggin’s (1982) “anticipated” or
rank-dependent expected utility (RDEU) preferences, and Puppe’s (1991)
homogeneous RDEU preferences with prize-dependent distortion of the
probabilities. Preference relations that allow a multiplicatively separable
form, i.e., V i�p� x� = gi�p�ui�x�, represent a natural reference point in our
analysis. When gi is linear, preferences are said to be disagreement linear
(DL), which includes the expected utility (EU) preferences (see Grant and
Kajii, 1995). Notice that preferences which do not have a multiplicatively
separable representation on � may have one on �e. For instance, the DA
functional has a multiplicatively separable representation. In this case, gi�p�
has the form p/�1+ �1− p�βi�, where βi > −1.

3. THE BARGAINING GAME

3.1. Shaked’s Rotating Offers Protocol

Shaked’s game is as follows. In each period there is a designated
bargainer i who submits a proposal xi = �x1i � � � � � xIi � ∈ X. The other bar-
gainers i+ 1� � � � � i+ I − 1 (modulus I) either accept or reject the proposal
in this order. If all of them accept xi, then the game concludes, and each
bargainer j receives xji . If xi is rejected by even just one bargainer, then
with probability ρ, where 0 < ρ < 1 is a fixed parameter, play passes to
the next period, where bargainer i+ 1 becomes the new proposer and bar-
gainers i + 2� � � � � i + I in turn respond; and with probability 1 − ρ, the

from px. Feasibility requires 1 ≥ p ≥ 0� xi ≥ 0, and
∑I
i=1 x

i = 1. Efficiency implies that p = 1
(i.e., only degenerate lotteries are efficient).

5V ix is the partial derivative of V i with respect to x. Similarly, V ip� V
i
px, and so on.
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game concludes, and bargainers receive the disagreement outcome D. We
assume that bargainer 1 proposes in the first period.
A history is a specification of a point in the game tree and the actions

(proposals and rejections) taken at each decision node in the game up to
that point. A (pure) strategy for bargainer i, denoted σi = �σit �∞t=1, specifies
a feasible action at every history at which he must act. A strategy profile is
a I-tuple of strategies, one strategy for each bargainer.
Any continuation strategy profile σ = �σi� σ−i� uniquely determines the

agreed division x = �x1� � � � � xI� ∈ X, and the period τ in which the agree-
ment is reached or no agreement is ever reached. We assume that com-
pound lotteries, in which the uncertainty is solved sequentially rather than
simultaneously, are reduced to probability measures on � by the usual mul-
tiplication rule. Thus from bargainer i’s viewpoint, the continuation strategy
profile σ can be naturally identified as an elementary lottery ρτxi on �e,
and the payoff of bargainer i is given by V i�ρτ� xi�.
A strategy profile is subgame perfect if, at every history, it is a best

response to itself. We say that σ is a stationary subgame-perfect equilibrium
(SSPE) if σ subgame-perfect equilibrium and the actions that it prescribes
in every period do not depend on time or on the actions in previous peri-
ods. In particular, each i’s proposal is time independent, and thus we write
xi = �x1i � � � � � xIi � for the proposal that bargainer i makes when he is the
proposer. We refer to the xi� i = 1� � � � � I, as SSPE proposals.
As Shaked showed in the expected utility case when I > 2, any feasible

division may be supported using subgame-perfect pure strategies provided
that ρ is large enough. As the same problem arises in our case where we
are expanding the class of preferences for bargainers, we concentrate on
SSPE from now on.6

3.2. The Certainty Effect and SSPE Outcomes

Within the EU framework, the characterization of SSPE outcomes in
Shaked’s game builds on the property that in any round the proposer can
extract from the other bargainers any surplus in excess of their certainty
equivalent from delaying agreement until the next round. In our setting, this
means that bargainer i proposes xi such that any other bargainer j gets a
share xji such that V j�1� xji� = V j�ρ� xji+1� and all j accept. But if V is not
linear in ρ and there are more than two bargainers, then this property is
not sufficient for xi to be a SSPE. To see this, consider a three-bargainers
situation in which V 3�1� x31� = V 3�ρ� x32� and V 3�1� x32� = V 3�ρ� x33�. Thus,
in period 1, bargainer 3 is indifferent between accepting x31 or rejecting it

6Additional support for the restriction to these kinds of strategies comes (at least in the
two-person case) from the experimental work of Zwick, Rapoport, and Howard (1992).



34 burgos, grant, and kajii

and accepting x32 in period 2. If the game reaches the second period, he
is also indifferent between accepting x32 or rejecting it and obtaining x33 in
period 3. However, if bargainer’s 3 preferences are not linear in the prob-
abilities, then it is possible that V 3�1� x31� < V 3�ρ2� x33�, and therefore it is
optimal for bargainer 3 to reject the proposals of bargainers 1 and 2 until
it is his turn and then obtain x33 for himself (conditional on the game not
terminating). This would be the case if bargainer 3, who is willing to insure
himself by accepting a sure x32 in exchange for a ρ chance of receiving x33
and otherwise nothing, would be willing to do so for a less favorable out-
come if more uncertainty existed. This particular violation of the indepen-
dence axiom, called the certainty effect, is one of the best-known findings
of the experimental literature, and therefore what could be considered an
exception is in fact the rule in a non-EU analysis. Keeping this in mind, we
take the route of concentrating on preferences accommodating this effect.7

Formally, we assume that each bargainer i’s preferences satisfy:

DICE (disagreement increasing certainty equivalence): If y ∼i qx, then
ry �i �rq�x for any probability r.

This condition states that bargainers are no more risk averse when there
is a chance of getting the worst outcome than where there is no such
chance. Empirical support for DICE is extensive, since it excludes only
preferences violating both expected utility theory and the certainty effect.
Notice that DICE is implied by (i) the weak homogeneity assumption in
Grant and Kajii (1995) that characterizes DL preferences, (ii) the sub-
proportionality property in Kahneman and Tversky’s (1979) “prospect the-
ory,” and (iii) Machina’s hypothesis II, or “family out” (see Fig. 1). For
the class of preferences with a multiplicatively separable representation
V i�p� x� = gi�p�ui�x�, DICE is satisfied if and only if for all probabili-
ties p and q, gi�p�gi�q� ≤ gi�pq�; that is, if and only if the elasticity of gi

is increasing.8 Thus, in particular, all DA preferences satisfy DICE.
The following lemma demonstrates that if each bargainer’s preference

relation satisfies DICE, then we can succinctly characterize the set of SSPE
proposals by proving that in any SSPE equilibrium, i will offer j the cer-
tainty equivalent of the amount that j would get in the next period in which
he is the proposer if all intermediate offers are rejected. DICE guarantees
that if bargainer j is willing to reject today’s offer by i to accept tomorrow’s

7At the small cost of precluding violations of EU in the opposite direction to the one
predicted by the certainty effect, this restriction allows for a sharp characterization of SSPE
as the fixed points of an smooth operator using certainty equivalents (Lemma 3.1), which
generally cannot be done when I > 2.

8Lemma 4.1 in Segal (1987, p. 195).
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FIG. 1. DICE and the “fanning out” hypothesis in the Marschak–Machina triangle.

offer by i+ 1, then he must be also willing to reject i+ 1’s offer in anticipa-
tion of accepting the next period’s proposal by i+ 2. The argument applies
iteratively until it is j’s turn to make a proposal. As a conclusion, i’s optimal
offer to j depends only on what j will propose for himself.
Let τ�i� j� be j − i if i ≤ j and I − �i − j� otherwise (i.e., if i is the

proposer in period t, then j is the proposer in period t + τ�i� j��. Then
Lemma 3.1. Suppose that DICE holds. The proposals xi� i = 1� � � � � I,

corresponding to a SSPE are always accepted, and they are characterized by

V j�1� xji� = V j
(
ρτ�i� j�� xjj

)
for all i� j� (1)

Proof. We proceed in four stages:

1. There is no SSPE where all proposals are rejected. By contradiction,
suppose that there was a SSPE where an agreement is never reached; in
particular, bargainer 1’s proposal is rejected in period 1. Consider the (pos-
sibly) off-equilibrium subgame that commences in period 1 after bargainer 1
has made an equal share proposal, i.e., xj1 = 1/I for all j ∈ �1� � � � � I�. Since
strategies are stationary, this subgame can be analyzed in reduced form
as a sequential move game where, in order, each bargainer j = 2� � � � � I
decides whether to accept or reject the proposal, and such that any rejection
leads to the disagreement outcome with probability 1. A straightforward
backward-induction argument shows that the subgame-perfect equilibrium
decision for each bargainer in this reduced single round of the bargaining
game is to accept the proposal. Hence an equal share proposal for bargainer
1 in period 1 strictly dominates his proposal in the putative SSPE, which,
by assumption, is rejected and leads in equilibrium to the disagreement
outcome with probability 1. Therefore, no SSPE exists in which offers are
rejected in every round.

2. In a SSPE, proposals are always accepted. If not, there is a bargainer i
whose proposal is rejected, and bargainer i+ 1’s proposal xi+1 is accepted in
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the SSPE, since in the previous stage we have shown that some bargainer’s
proposal must be agreeable. Since utility is increasing in p, there must be
a proposal xi such that V j�1� xji� > V j�ρ� xji+1� for each j. But if such an xi
is proposed by bargainer i, then it must be accepted, since if it is rejected,
xi+1 will be the final outcome because of the stationarity. Then bargainer i
would be better off, which is a contradiction.

3. In a SSPE, proposals satisfy Eq. (1): Let xi be a SSPE outcome in the
period where bargainer i is the proposer, i = 1� � � � � I. Fix a bargainer i.
Then for any j� j �= i� V j�1� xji� < V j�ρτ�i� j�� xjj� cannot be the case, since
otherwise bargainer j rejects proposals until it is his turn and then pro-
poses xj , and xj is accepted. This is equivalent to bargainer j receiving
x
j
j with probability ρτ�i� j� and D with probability 1 − ρτ�i� j� at the time

when i makes a proposal, thus accepting xji is not a best response for j.
Hence V j�1� xji� ≥ V j�ρτ�i� j�� xjj� must hold for any i and j. Now we show
that V j�1� xji� = V j�ρτ�i� j�� xjj� for any i �= j, by induction on n = τ�i� j�.
First, pick any i and j with τ�i� j� = 1 (i.e., j is next to i). Suppose that
V j�1� xji� > V j�ρ� xjj� holds. Then in the subgame where bargainer i pro-
poses yji such that V j�1� xji� > V j�1� yji � > V j�ρ� xjj�, bargainer j must
accept the proposal. Thus bargainer i is not optimizing, a contradiction.
This establishes the claim for n = 1. Now let n > 1 and suppose that
V j�1� xji� = V j�ρτ�i� j�� xjj� holds for any i �= j with τ�i� j� < n. Pick any i and
j with τ�i� j� = n. For any k such that τ�k� j� = 1� � � � � n − 1� V j�1� xjk� =
V j�ρτ�k� j�� xjj� holds by the induction hypothesis. Thus by DICE, we have
V j�ρn−τ�k� j�� xjk� ≤ V j�ρn� xjj� for any k such that τ�k� j� = 1� � � � � n − 1.
This shows that in any subgame where j = i + n has rejected bargainer i’s
offer, his (ex ante) payoff is at most V j�ρn� xjj�. Thus if bargainer i can offer
y
j
i with V

j�1� xji� > V j�1� yji � > V j�ρn� xjj�, then it must be accepted. There-
fore, V j�1� xji� ≤ V j�ρn� xjj�, which together with V j�1� xji� ≥ V j�ρn� xjj�
implies V j�1� xji� = V j�ρn� xjj�, as desired.
4. Proposals xi� i = 1� � � � � I, satisfying Eq. (1) can be supported in a SSPE.

Pick any proposals xi� i = 1� � � � � I, satisfying Eq. (1). Consider the station-
ary strategy for bargainer i where if it is his turn to be the proposer, he
proposes xi, and if some other individual j �= i is the proposer, i accepts
a proposal xj whenever V i�1� xij� ≥ V i�ρτ�j� i�� xii� and rejects it otherwise.
We show that this profile of strategy constitutes an SSPE. Since we can
truncate the game to be of finite length and bargainers still receive the
same payoff, if a stationary strategy profile is not a subgame-perfect equi-
librium, then there exists a bargainer with a profitable one-shot deviation
(see Lemma 98.2 in Osborne and Rubinstein, 1994). Hence it suffices to



bargaining and boldness 37

show that there is no profitable one-shot deviation for each bargainer i.
We split this proof into two cases, depending on the role of proposer or
responder of bargainer i:

• Bargainer i is the proposer in period t. If i proposes more than xii
for himself, then there exists at least one bargainer j who is now offered
x̂
j
i < x

j
i . Since V

j�1� x̂ji� < V j�ρτ�it � j�� xjj�� j will reject. So by proposing
more, i will receive xii+1 with probability ρ and D with probability 1 − ρ.
But we have V i�1� xii+1� = V i�ρI−1� xii� < V i�1� xii�, and so V i�ρ� xii+1� <
V i�1� xii� holds, because V i is increasing in p. Hence i’s proposal is optimal.

• Bargainer j �= 1 is the proposer. Bargainer i is offered xij , where
V i�1� xij� = V i�ρτ�j� i�� xii�. If he rejects, then he will receive xij+1 with prob-
ability ρ and D with probability 1− ρ, where V i�1� xij+1� = V i�ρτ�j� i�−1� xii�.
And by DICE, V i�ρ� xij+1� ≤ V i�ρτ�j� i�� xii� = V i�1� xij�. So i’s acceptance
rule is optimal.

Thus, provided that a solution xi� i = 1� � � � � I, to Eq. (1) exists and pref-
erences satisfy DICE, the equilibrium path of a SSPE consists of the first
bargainer proposing x1 and everyone accepting it (which ends the game).
Hence, x1 is the outcome induced by such SSPE, or simply a SSPE outcome.

Remark: In the proof of Lemma 3.1, we use DICE only when
I > 2. Thus, for the two-person case, Lemma 3.1 derives from first-order
stochastic dominance alone. Notice that in this case, SSPE proposals
are characterized by Rubinstein-like equations V 1�1� x12� = V 1�ρ� x11� and
V 2�1� x21� = V 2�ρ� x22�.

3.3. Existence and Uniqueness of SSPE

We first show that under DICE,9 an SSPE outcome exists and every
SSPE outcome is better than D for every bargainer. To do this, we write
φ�ρ� z1� � � � � zI� = �1 −∑

j �=i cj�ρτ�i� j�� zj��Ii=1, where ci � �0� 1� × �0� 1� →
�0� 1� denotes the certainty equivalent function for bargainer i, given implic-
itly by V i�p� x� = V i�1� ci�. By Lemma 3.1, the problem of finding an SSPE
outcome under DICE is equivalent to finding a solution to Eq. (1), which is
then equivalent to finding �z1� � � � � zI� in �0� 1�I such that φ�ρ� z1� � � � � zI� =
�z1� � � � � zI�.

Proposition 3.1. If preferences satisfy DICE, then there exists an SSPE
outcome, and every SSPE outcome is strictly positive.

9Again, from a formal standpoint, this statement is unnecessarily strong. DICE matters in
this paper only as a sufficient condition for the characterization of Lemma 3.1 to hold. In the
two-person case, this result is true even without DICE, and so are the remaining statements
concerning existence, uniqueness, and convergence of SSPE outcomes.



38 burgos, grant, and kajii

Proof. Let φ̃�ρ� z1� � � � � zI� = �max�0� 1 − ∑
j �=i cj�ρτ�i� j�� zj���Ii=1.

Clearly, any fixed point of φ�ρ� ·� is a fixed point of φ̃�ρ� ·� and
φ�ρ� ·� = φ̃�ρ� ·� for strictly positive z. So we are done if φ̃�ρ� ·� has
a fixed point and every fixed point of φ̃�ρ� ·� is strictly positive. The
existence of a fixed point follows from Brouwer’s theorem, since φ̃�ρ� ·�
is a continuous function from the compact set �0� 1�I into itself. To
show that any fixed point is strictly positive, pick any fixed point z̄ of
φ̃�ρ� ·� and suppose that on the contrary z̄ is not strictly positive. Since
φ̃�ρ� 0� � � � � 0� = �1� � � � � 1�, at least one z̄i must be positive, so, with-
out loss of generality, assume that z̄1 = 0 and z̄2 > 0. Since z̄ is a fixed
point of φ̃, we have z̄2 = 1 − ∑

j �=2 cj�ρτ�2� j�� z̄j�, and z̄1 = 0 implies
1 ≤∑I

j=2 c
j�ρτ�1�j�� z̄j�. But from ρτ�1� j� < ρτ�2� j� for j �= 1� 2, and since the

certainty equivalent function cj is increasing in probability, we have

1 ≤
I∑
j=2
cj
(
ρτ�1� j�� z̄j

) = c2(ρ� z̄2)+ I∑
j=3
cj
(
ρτ�1� j�� z̄j

)

≤ c2(ρ� z̄2)+ I∑
j=3
cj
(
ρτ�2� j�� z̄j

)

= c2(ρ� z̄2)+
(∑
j �=2
cj
(
ρτ�2� j�� z̄j

)− c1(ρτ�2� 1�� z̄1)
)

= c2(ρ� z̄2)+ 1− z̄2 − c1(ρτ�2� 1�� z̄1)�
Since c1�ρτ�2� 1�� z̄1� = 0, the foregoing calculation shows that 1 ≤
c2�ρ� z̄2� + 1 − z̄2, and hence z̄2 ≤ c2�ρ� z̄2�. This contradicts the fact
that c2�ρ� z̄2� is the certainty equivalent of elementary lottery ρz̄2.

One obvious approach to establishing sufficient conditions for the uni-
queness of equilibrium is to find conditions under which φ has a unique
fixed point. In the EU case, Merlo and Wilson (1995) provide the follow-
ing sufficient condition on each bargainer’s preferences, which holds when-
ever the von Neumann–Morgenstern utility function of such bargainer is
concave:

CEC (certainty equivalent contraction): ci�p� ·� is a contraction for any
p < 1.10

Notice that, together with DUEL, CEC implies:

CEC∗cix�p� ·� < 1 for any p < 1.

10That is, given p < 1, there is a δ < 1 such that for any x� y ∈ �0� 1�, �ci�p� x� − ci�p� y�� <
δ�x− y�.
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In our more general framework, however, CEC∗ alone does not guar-
antee uniqueness. An additional potential source of multiplicity is the exis-
tence of nonmonotonic cross-effects between probabilities and prizes. Thus,
we require:

IMCE (increasing marginal certainty equivalent): cixp�p� x� > 0 for all
p ∈ �0� 1� and all x ∈ �0� 1�.
Whereas CEC∗ implies that the (absolute) risk premium for an elemen-
tary lottery, x − c�p� x�, is an increasing function of x, IMCE implies
that the rate of this increase is increasing in the likelihood that the
elementary lottery results in the disagreement outcome. Under DUEL,
conditions CEC∗ and IMCE both hold whenever V ixx�1� x� ≤ 0 and
V ixp�p� x� > 0 for all x ∈ �0� 1� and all p ∈ �0� 1�.11 To see this, notice
that V ixp�p� x� > 0 implies that V ix�p� x� < V ix�1� x�, and V ixx�1� x� ≤ 0
ensures that V ix�1� x� < V ix�1� ci�p� x��, since ci�p� x� < x by con-
struction. Thus, cix�p� x� = V ix �p�x�

V ix �1�ci� <
V ix �1�x�
V ix �1�ci� ≤ 1. Differentiating with

respect to p and nothing that ci is increasing in both arguments, we get
cixp�p� x� = �V ixp�p� x� − V ixx�1� ci�cip�p� x�cix�p� x��/�V ix�1� ci�� > 0.

Proposition 3.2. Under DICE and DUEL, if preferences satisfy CEC∗

and IMCE, then the SSPE outcome is unique for any ρ ∈ �0� 1� and is a
continuously differentiable function of ρ on ρ ∈ �0� 1�.
Proof. It suffices to show that φ has a unique fixed point or, equiv-

alently, for any fixed ρ ∈ �0� 1�, the vector field  �ρ� z1� � � � � zI� ≡ z −
φ�ρ� z1� � � � � zI� defined on �0� 1�I has a unique zero. We first show that
the Jacobian matrix of  �ρ� ·� has a positive determinant everywhere; i.e.,
the determinant of the matrix



1 c2x�ρ� z2� � � � � � � cIx�ρI−1� zI�
c1x�ρI−1� z1� 1 c3x�ρ� z3� � � �

���
��� c2x�ρI−1� z2� 1 � � �

���
���

���
� � �

���
c1x�ρ� z1� c2x�ρ2� z2� � � � cI−1x �ρI−1� zI−1� 1


 (2)

is positive. Condition CEC∗ guarantees that (i) every off-diagonal entry is
strictly less than 1, IMCE implies that (ii) for any i �= j, the element �i� j�

11These conditions are satisfied in natural cases; concavity of the certainty utility function
is prevalent in generalized risk preference models. For instance, in the case of RDEU pref-
erences, it is a necessary condition for risk aversion. A positive cross-derivative also seems
plausible, as it states, that as the marginal value of improving one’s allocation increases, the
more likely that there will be an agreement. In fact, for any multiplicatively separable func-
tional, V ipx�p� x� > 0 is implied by DUEL alone.
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is smaller than the element �i+ 1� j�. Theorem A.1 in the Appendix shows
that a square matrix with 1’s in the diagonal and off-diagonal elements
satisfying (i) and (ii) has positive determinant.
Then by the index theorem,12  �ρ� ·� has a unique zero, which can be

written as a C1 function by the implicit function theorem.

4. BOLDNESS

We shall show in the next section that as the risk of breakdown in
Shaked’s game converges to 0 (i.e., as ρ→ 1), the sequence of SSPE out-
comes converges to an outcome in which one may view all of the bargainers
as equally marginally bold. Marginal boldness is a “generalized utility” ana-
log of Aumann and Kurz’s (1977) boldness measure of attitudes toward
risking large losses, in contrast with the Arrow–Pratt measures of risk aver-
sion, which measure attitudes toward small risks only. Let us consider a
given proposed division x = �x1� � � � � xI� ∈ � and imagine that bargainer i
demands a small addition, s > 0, to his share. He will be prepared to risk
a probability of disagreement up to the level q�s�, where q�s� is implic-
itly defined by V i�1− q�s�� xi + s� − V i�1� xi� = 0. We define the marginal
boldness of bargainer i at outcome x as q′�0�, i.e., the limit (when it exists)
of the difference quotient q

s
as s tends to 0. By choosing V i such that

V ip�1� xi� and V ip�1� xi� are both positive if xi > 0, this leads to:

Definition 4.1. The marginal boldness bi�x� of bargainer i at x ∈ X is
defined as

bi�x� =
{
V ix �1�xi�
V ip�1�xi� for xi > 0
+∞ for xi = 0.

(3)

Intuitively, the marginal boldness offers a first-order approximation to
the cost for bargainer i of risking xi (measured in terms of outcome).
Clearly, the marginal boldness is invariant to any ordinal transformation
of the function V i; thus the concept of marginal boldness does not depend
on the choice of utility function. Notice also that in the expected utility
cases, bi�x� = uix�xi�/ui�xi�, which is the Aumann–Kurz marginal boldness
measure.
Continuing the analogy with the Aumann–Kurz analysis, let us define:

Definition 4.2. Outcome x ∈ � is deemed equally marginally bold
(EMB) for the bargainers if bi�x� = bj�x� for all i� j.

12See, for instance, Milnor (1965).
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Thus, at any EMB outcome the cost of risking their share is the same
for all bargainers. An attractive feature of the EMB concept is that it exists
under fairly weak assumptions on the utility representations. Namely,

Proposition 4.1. There exists an EMB outcome if for each bargainer
i� V i is C1, (i) V ip�1� 0� = 0 and V ip�1� x� > 0 for all x in �0� 1�, and (ii)
V ix�1� x� > 0 for all x in �0� 1�.
Proof. See the Appendix.

In particular, if condition DUEL is satisfied, then an EMB outcome
exists. For multiplicatively separable preferences, it can be readily seen that
the equally marginally bold outcomes are characterized by the first-order
conditions of the following maximization program:

x = argmax
y∈X

I∏
i=1

[
ui�yi�]1/gip�1�� (4)

Notice the similarity with the “bargaining power”-adjusted (i.e., asymmet-
ric) Nash bargaining outcome in the expected utility case. In the foregoing
program, we can interpret θi = �gip�1��−1/�

∑I
j=1�gjp�1��−1� as bargainer i’s

bargaining power. This is quite intuitive, as gip�1� may be viewed as the
bargainer’s marginal evaluation of certainty for a given prize (that is bet-
ter than the disagreement outcome). The greater the gip�1�, the larger the
premium placed on certainty by bargainer i, and hence other things being
equal, the less bold is the bargainer in pushing for a better split. If bargainer
i is weakly risk averse and gi�1� = 1, then it follows that gip�1� ≥ 1. Thus
the relative “overvaluation” of certainty by the bargainer (i.e., the degree of
“probabilistic” risk aversion of the bargainer) in conjuction with the degree
to which his marginal utility for the pie diminishes determines the EMB
outcome.
A simple sufficient condition for the uniqueness of the EMB outcome is

that each bargainer’s marginal boldness is negatively related to his share of
the pie; i.e., if for all x� y with xi �= yi,[

bi�x� − bi�y�]�xi − yi� < 0� (5)

Indeed, if x and y are equally marginally bold outcomes with x �= y, then
without loss of generality, then we can assume that x1 > y1 and x2 < y2.
But this implies that b1�x� < b1�y� and b2�x� > b2�y� by Eq. (5), which
contradicts the fact that both x and y are EMB outcomes.
It is straightforward to check that if bi is strictly decreasing for all i, then

Eq. (5) holds, and thus uniqueness of the EMB outcome follows. If con-
dition DUEL is assumed, since cip�1� x� = V ip�1� x�/V ix�1� x�, from Eq. (3)
we have cip�1� x� = 1/bi�x� for any x with xi = x, and thus cixp�1� x� =
cipx�1� x� = −bix�x�. Thus, a positive cross-derivative for ci guarantees the
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existence of a unique EMB outcome. Hence,

Proposition 4.2. Given DUEL, if preferences satisfy IMCE, then the
EMB outcome is unique.

5. THE LIMIT RESULT

In this section we obtain a characterization of the limit of SSPE outcomes
as the parameter 1 − ρ measuring the risk of breakdown tends to 0. We
assume DICE and DUEL throughout this section. So, by Proposition 3.2,
we write the unique SSPE outcome as x�ρ� for ρ ∈ �0� 1�, and there is a
unique EMB outcome by Proposition 4.2. The next result shows that the
SSPE outcome approaches to a unique EMB outcome as probability of
breakdown goes to 0.

Proposition 5.1. Assume that DICE, DUEL, and IMCE hold. Then for
each j� x̄j ≡ limρ→1 x

j
j�ρ� exists, and x̄ = �x̄1� � � � � x̄I� is a unique EMB

outcome.

Proof. Pick any increasing sequence �ρn � n = 1� � � �� with limn→∞ ρn =
1. Since an EMB outcome is unique and X is compact, it suffices to show
that x̄ is an EMB outcome, assuming xii�ρn� → x̄i for each i as ρn → 1.
First, we claim that for every i, if x̄j > 0, then

lim
ρn→1

x
j
j�ρn� − xji�ρn�
1− ρτ�i� j�n

= 1
bj�x̄� for all j �= i� (6)

where 1/bj�x̄� = 0 if bj�x̄� = +∞, by convention; see Eq. (3). To see this,
first recall that x�ρn� satisfies Eq. (1) by Proposition 3.1 and xji�ρn� < xjj�ρn�
for each i� j� i �= j. Applying the mean value theorem to the function t  →
V j�t + �1− t�ρτ�i�j�� txji�ρ� + �1− t�xjj�ρ�� for every n and for every pair i

and j �i �= j�, we can find some �qji �ρn�� sji �ρn�� with qji �ρn� ∈ �ρτ�i� j�n � 1�
and sji �ρn� ∈ �xji�ρn�� xjj�ρn�� such that

0 = V j(1� xji�ρn�)− V j(ρτ�i� j�n � x
j
j�ρn�

)
= V jp

(
q
j
i �ρn�� sji �ρn�

)(
1− ρτ�i� j�n

)+ V jx (qji �ρn�� sji �ρn�)(xji�ρn� − xjj�ρn�)�
Since V jx > 0 by DUEL, we can rewrite the foregoing expression as

V
j
p

(
q
j
i �ρn�� sji �ρn�

)
V
j
x

(
q
j
i �ρn�� sji �ρn�

) = x
j
j�ρn� − xji�ρn�
1− ρτ�i� j�n

�
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for any given n. As ρn → 1, for all i and j we have xji�ρn� → x̄j from
Eq. (1), and so sji �ρn� → x̄j . Hence, the left-hand side converges to 1/bj�x̄�,
as desired.
Set rj = 1

bj�x̄� for each j. Fix any i and j with i �= j, and consider functions

ρ  → �xjj�ρ�− xji�ρ�� and ρ→ �1−ρτ�i�j�� defined on �ρn� 1� for any given n.
By Cauchy’s mean value theorem, there is ρ∗n ∈ �ρn� 1� with

d
dp

[
x
j
j�ρ∗n� − xji�ρ∗n�

]
d
dp

[�1− ρτ�i� j��]∣∣
ρ=ρ∗n

=
[
x
j
j�ρn� − xji�ρn�

]
(
1− ρτ�i� j�n

) �

We have shown that the right-hand side converges to rj , and so we have

lim
ρn→1

d

dρ

[
x
j
j�ρn� − xji�ρn�

] = −τ�i� j�rj� (7)

Since the equilibrium offers sum up to 1 by construction,
∑
j �=1�xjj�ρ� −

x
j
1�ρ�� −

∑
j �=i�xjj�ρ� − xji�ρ�� = 0 holds for any i �= 1. Differentiating this

relation with respect to ρ and using Eq. (7), we get �∑j �=1−τ�1� j�rj� −
�∑j �=1−τ�i� j�rj� = −τ�1� i�ri + τ�i� 1�r1 −∑

j �=1� i �τ�1� j� − τ�i� j��rj = 0.
Note that τ�1� j� − τ�i� j� = i − 1 if j > 1, and it is equal to �I − i + 1�
otherwise. So, for each i = 2� � � � � I, we can rewrite this relation as

− �i− 1�αi + �I − i+ 1��r̄ − αi� = 0� (8)

where αi =
∑I
j=1 r

j and r̄ =∑I
j=1 r

j . Hence, αi = r̄�I − i+ 1�/I for each i =
2� � � � � I. Thus, r1 = · · · = rI , as desired.

6. DISCUSSION

Let us conclude with a discussion on the connection between the concept
of EMB outcome and the other extensions of the Nash solution to general
risk preferences in the literature.

6.1. Comparison with Rubinstein, Safra, and
Thomson’s Extension

Rubinstein, Safra, and Thomson’s ordinal Nash solution associates with a
two-person bargaining problem �
i�i=2i=1 its ordinal Nash outcome (or simply
Nash outcome), defined as the element x ∈ X such that for both i there is
no p ∈ �0� 1� and y ∈ X such that py !i x and px ≺j y. In our setting, one
may wish to interpret this outcome x, as one against which neither bargainer
can extract a concession from the other because of the common risk of dis-
agreement, 1 − p, that each perceives exists if he sticks with his position.
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To compare the concept of ordinal Nash outcome with the concept of EMB
outcome, one must first extend Rubinstein, Safra, and Thomson’s definition
to our multiperson setting. The critical issue here is to define how the cost
of a concession sought by bargainer i can be allocated among the other bar-
gainers. A natural extension for a multilateral bargaining setting is to allow
a bargainer to seek concessions simultaneously from any number of the
other bargainers. This is reinforced by the public good nature of the prob-
ability of disagreement. More specifically, if bargainer i threatens to leave
the negotiation table, then the negative public effect from disagreement
will be borne by all of the bargainers, considerably increasing bargainer i’s
ability to extract concessions. Unfortunately, although this approach is intu-
itively appealing, we show in the Appendix that if I > 2, then no outcome
survives this criterion, even for smooth EU preferences.
One way to recover existence of Nash outcomes in a multiperson setting

is to allow a bargainer to seek a concession from only one other bargainer.
Notice that this smaller flexibility in “financing” a given concession makes
it much more difficult for a bargainer to appeal successfully against a given
allocation. More formally, this second scenario leads to the following:

Definition 6.1. Bargainer i can appeal against x if there exists j� q ∈
�0� 1� and s > 0, such that xj − s ≥ 0� V i�1 − q� xi + s� > V i�1� xi� and
V j�1 − q� xj� < V j�1� xj − s�. Here x is an ordinal Nash outcome if no
bargainer can appeal against x.

Notice that the ordinal Nash outcome is invariant to monotonic trans-
formations of V i. Obviously, this coincides with Rubinstein, Safra, and
Thomson’s solution when I = 2.
To establish the link between EMB outcomes and ordinal Nash out-

comes, for any x ∈ X and every i, let αix � �q� s�  −→ V i�1 − q� xi + s� −
V i�1� xi� and βix � �q� s�  −→ −V i�1− q� xi� + V i�1� xi − s�. Then it can be
readily shown that bargainer i has no successful appeal against x if and
only if for each j �= i� �q� s� = �0� 0� maximizes αix subject to βjx = 0. The
first-order necessary condition for this maximization problem is equivalent
to bi�x� = bj�x�. So we have:

Proposition 6.1. Any ordinal Nash outcome is an EMB outcome.

Of course, the converse will hold if the first-order condition is sufficient:

Proposition 6.2. Suppose that x is an EMB outcome. If all αix and β
j
x

are quasi-concave, then x is a Nash outcome.13

13In the two-person case, Houba, Tieman, and Brinksma (1998) provide weaker sufficient
conditions for the existence of an ordinal Nash outcome if preferences are multiplicatively
separable. Hanany and Safra (2000) characterize a set of preferences with the properties that
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Thus, in light of Proposition 5.1, we can conclude that if all αix and β
j
x are

quasi-concave, then the concept of Nash outcome captures the logic behind
the rotating-offers game. However, αix and βjx are not necessarily quasi-
concave under our assumptions on preferences. Notice that, because of its
additive structure, βjx is concave (and so quasi-concave) if V j�1 − q� xj�
is convex in q and V i�1� xj − s� is concave in s. In the multiplicatively
separable case, these conditions follow if uj is concave and gj is convex,
so that for the RDEU case, quasi-concavity of βjx follows from aversion
to mean-preserving spreads.14 Even in this case, however, αix can fail to
be quasi-concave, and the Nash outcome (which would be unique, since
aversion to mean-preserving spreads is satisfied) might not exist. A family
of two-person examples of this situation can be constructed as follows:

Example 6.1. Let �hN�p��N≥1 be a sequence of functions constructed
recursively as hN�p� ≡ ehN−1�p�−1, with h1�p� ≡ ep−1, and let �gN�p��N≥1 ≡
�phN�p��N≥1. For any given N , consider the bargaining problem where
bargainer 1 has Yaari’s dual preferences (Yaari, 1987) over �e represented
by V 1�p� x� = gN�p�x and bargainer 2 is an expected value maximizer; i.e.,
we can choose V 2�p� x� = px.
Clearly, for any bargaining problem within this family, DUEL is satis-

fied, and since for both bargainers preferences are separable and V ixx = 0,
CEC∗ and IMCE hold as well. Therefore, for each N , the bargaining
problem has a unique EMB outcome, x̄ = �x̄� 1 − x̄�, where x̄ is given
by 1/�g′N�1�x̄� = 1/�1− x̄�. Routine calculations show that g′N�1� = 2 and
g′′N�1� = N + 2, This yields x̄ = 1/3 independently of the value of N .
Since we are in a two-person15 bargaining situation with a unique

EMB outcome, for any given N the outcome x̄ = �1/3� 2/3� is also
the limit as ρ→ 1 of the (unique, by CEC∗) SSPE proposals in the
alternating-offers game. In this situation, however, for sufficiently large
values of N , a Nash outcome does not exist, which we illustrate later.
By Proposition 6.1, it suffices to consider whether x̄ = �1/3� 2/3� can
be successfully appealed. Since bargainer 2 is an expected value maxi-
mizer, bargainer 1 can appeal against x̄ if there is a small concession
s > 0 and probability 1 − q with (i) �2/3��1 − q� = 2/3 − s such that
(ii) 1/3 < gN�1− q��1/3+ s�. Figures 2(a) and 2(b) plot the line (i)
and the upper contour set (ii), with p = 1 − q and x = 1/3 + s for

(i) a Nash outcome exists for each couple of preferences in the set, and (ii) for preferences
which do not belong to the set there exists another preference relation (which can be chosen
from the set) such that the resulting bargaining problem has no Nash outcome.

14This implication follows from Corollary 2 in Chew, Karni, and Safra (1987).
15One can readily verify that gN exhibits increasing elasticity for all N , so DICE is also

satisfied. Thus, the example can be readily extended to a situation with I > 2 bargainers.
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FIG. 2. Examples with multiplicatively separable preferences where (a) the unique EMB
outcome is also an ordinal Nash outcome, and (b) the unique EMB outcome is not an ordinal
Nash outcome.

the cases N = 6 and N = 15, respectively. It turns out that if N ≤ 6,
then the upper contour set (ii) lies above (i), and thus x̄ is a Nash
outcome. If N > 6, however, then there does exist a proposal which
is preferred to receiving x̄ = 1/3 for certain.16

16Interestingly, the preferences of bargainer 1 violate Hanany and Safra’s necessary and
sufficient conditions for the existence for the existence of Nash outcomes for all N . Thus,
for any given N , there must be some preferences for bargainer 2 such that the associated
bargaining problem has no Nash outcome. We showed earlier that when N > 6, it is enough
to take bargainer 2 to be an expected value maximizer, but that when N ≤ 6, the challenge to
find such preferences remains.
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6.2. Comparison with Safra and Zilcha’s Extensions

Safra and Zilcha’s functional Nash solution associates with a bargainer
problem �
i�i=Ii=1 the outcome in X that maximizes the product

∏I
i=1�Ui − di�

for Ui ≥ di, where each Ui is a smooth functional over marginal cumu-
lative distribution functions over X that represents preferences 
i and
di = Ui�δD�. The functional Nash solution is well defined provided that all
Ui representing a given 
i are related by positive affine transformations.
This is the case with, among others, the families of DL and RDEU pref-
erences. We have seen that in both cases, we can represent preferences

i over �e by taking V i�p� x� = gi�p�ui�x� with gi�0� = 0� gi�1� = 1,
ui�0� = 0, and ui�1� = 1, and that we can choose gi�p� = p in the DL
case. For the case in which the bargaining set X is the one-dimensional
simplex, if preferences 
i display risk aversion and D ∼i 0, then the func-
tional generalization of Nash solution for both DL and RDEU preferences
is characterized by the maximization program

x = argmax
y∈X

I∏
i=1
ui�yi�� (9)

Comparing (9) with (4), we see that for the class of DL preferences, this
extension coincides with the EMB solution. However, for the class RDEU
preferences, the EMB solution generally differs from the functional Nash
solution.
A local utility approach also suggested in Safra and Zilcha’s paper leads

to a different extension of the Nash solution to general (smooth) prefer-
ences: the sequential Nash solution. Since this extension coincides with the
functional generalization for the case of RDEU preferences, it also differs
from the EMB solution.

APPENDIX

Proof of Proposition 3.2

We show that the determinant of the matrix (2) is positive. By relabeling
row and column index k of (2) to I − k+ 1, it suffices to show the follow-
ing (throughout, by convention, if i > n, then index i indicates the i–nth
element).

Theorem A.1. Let A = �aij�ni� j=1 be an n × n matrix such that for all
i� aii > ai+1i > · · · > ai−1i > 0. Then det�A� > 0.

Proof. The result holds by the following three lemmas.
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Lemma A.2. Let A = �aij�ni� j=1 be an n × n matrix such that for all i,
1 = aii ≥ ai+1i ≥ · · · ≥ ai−1i > 0. Then there exists a matrix B = �bij�ni� j=1
with the properties (i) bij = 1 or 0 for any i� j; (ii) 1 = bii ≥ bi+1i ≥ · · · ≥
bi−1i; and (iii) det�A� ≥ det�B�.
Proof of Lemma A.2. Denote by Aij the �i� j� cofactor of matrix A; i.e.,

Aij is the determinant of the �n− 1�× �n− 1�matrix which is obtained from
A by eliminating the ith row and the jth column, multiplied by �−1�i+j .
Consider the following procedure on matrix A. If there is a column such

that 1 > aij = ai+1j = · · · = akj > 0 for i < k, then if Aij +Ai+1j + · · · +
Akj ≥ 0, replace aij� ai+1j� � � � � akj with ak+1� j (which is less than these
elements by assumption); otherwise, replace them with ai−1� j . If there is no
such column, then every element of A is either 1 or 0, and hence A already
has the required property. Observe that this procedure strictly increases the
number of common elements in column j. Thus repeating this procedure
finitely many times, every element of the matrix becomes either 1 or 0, and
call it B. From the Laplace expansion, it readily follows that this procedure
always decreases the determinant and preserves the sign condition of the
original matrix. Therefore, B satisfies the required properties.

Lemma A.3. If matrix B satisfies (i) and (ii) in Lemma A.2, then there
exists a column k such that the sign of the determinant does not change if all
of the elements of column k are replaced with 1.

Proof of Lemma A.3. There is nothing to prove if there is a column
where every element is 1. If there is not, then choose a sequence of indices
tk� k = 1� � � � � n + 1, by the following rule: t1 = 1� tk is the first tk > tk−1
with btktk−1 = 0. Since tk ∈ �1� � � � � n�, there are k and k′� k �= k′, with
tk = tk′ and tk� � � � � tk′−1 are distinct. Denote by b�j� the jth column vector
of B. We claim that b�tk� + · · · + b�tk′−1� = ce, where c is a positive integer
and e = �1� � � � � 1�′. To see this, note that by construction, if the ith ele-
ment of b�tj� is 1, then the i + 1th element of b�tj� is either 1 or 0 (thus
tj+1 = i+ 1) and the ith element of b�tj+1� is 0 and the i+ 1th element of
b�tj+1� is 1. So for any row i, 1 appears exactly the same times as it does in
row i + 1; hence the claim follows. Since adding columns tk+1� � � � � tk′−1 to
column tk does not change the determinant, we have det�B� = det��� � � � ce,
b�tk + 1�� � � ��� = c det��� � � �e, b�tk + 1�� � � ���, and so column tk has the
desired property.

Lemma A.4. If matrix B satisfies (i) and (ii) in Lemma A.2, then
det�B� ≥ 0.

Proof of Lemma A.4. We prove this by induction. It holds for n = 1.
Suppose that it is also true for n − 1 and n > 1. By Lemma A.3, we can
set one of the columns, say b�l�, equal to e. Since we can relabel columns
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and rows so that properties (i) and (ii) in Lemma A.2 are met, assume
l = 1 without loss of generality. If there is another column that is equal
to e, then det�B� = 0, and we are done. If there is not, then pick tk� k =
1� � � � � n+ 1, as in the previous proof, starting with t1 = 2. If �tk� constitutes
a loop before tk = 1 occurs, then the same argument shows that we can
replace a column other than the first with e without changing the sign of
the determinant, and so we are done. Otherwise, let k be the first time
tk = 1. Then in the expression b�t1� + · · · + b�tk−1�, 1 appears exactly the
same number of times (say α times) in every row, except one less time in
the first row.
Now multiply columns t2� � � � � tk−1 by �1/α� and subtract them from

column b�1�. This operation does not change the determinant, and the
resulting column vector is 0 for the off-diagonal elements, and the diagonal
element is 1− α−1

α
> 0. By the Laplace expansion with respect to column 1

and the induction hypothesis, the determinant of the resulting matrix is
nonnegative. Thus det�B� ≥ 0 holds for n.

Proof of Proposition 4.1

Under the assumption on the V i� bi�x� = V ix �1�xi�
V ip�1�xi� is bounded away from

0 for x ∈ � and bi�x� = V ix �1�xi�
V ip�1�xi� → ∞ as xi → 0. For each x ∈ �, let b̄�x� =

� 1∑I
i=1 bi�x�

��bi�x��Ii=1; i.e., b̄ is the normalized vector of marginal boldness.

By construction, x is an EMB outcome if b̄i�x� = 1
I
for every bargainer i.

For every k = 1� � � �, let Xk = �x ∈ X � xi ≥ 1
�k+1�I for all i� and consider

a correspondence .k from Xk to itself given by

.k�x� =
{
y ∈ Xk � yi =

1
�K + 1�I if b̄i�x� < 1

I

}
�

That is, .k�x� assigns the worst available outcome if bargainer is not bold
enough. Since

∑I
i=1 b̄

i�x� = 1�.k is nonempty valued, and it is readily veri-
fied that it is convex valued with closed graph. So by Kakutani’s fixed point
theorem, there is a fixed point x̄k ∈ Xk, i.e., x̄k ∈ .k�x̄k�, for each k. Abus-
ing notation, we write �x̄k � k = 1� � � �� for a convergent subsequence, and
let x̄ ∈ X be its limit point.
It x̄i = 0 for some i, then

∑I
i=1 b

i�x̄k� → ∞ as k→ ∞ by the boundary
property of bi. So for any j with x̄j > 0, we have b̄j�x̄k� → 0 as k→ ∞. So
x̄
j
k = 1

�k+1�I for all k large enough, since x̄k ∈ .k�x̄k�, but then x̄j > 0 could
not be the limit. So we conclude that x̄ >> 0. Then for all k large enough,
x̄ik >

1
�k+1�I must hold for every i, which is possible only if b̄i�x̄k� ≥ 1

I
for

every i. Since
∑I
i=1 b̄

i�x̄k� = 1� b̄i�x̄k� = 1
I
must hold for every i, if k is large

enough.
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Nonexistence of Ordinal Nash Outcome if We Allow for
Simultaneous Concessions When I > 2

We show that no outcome is robust against bargainers seeking conces-
sions simultaneously from at least two of the other bargainers. If such a
robust outcome exists, then it must be an EMB outcome, so let x ∈ � be an
EMB outcome. We show that x is not robust against bargainer 1 demand-
ing an extra share. By the implicit function theorem, for each j� I ≥ j ≥ 2,
there is a C1 function sj�q� defined for small q ≥ 0 such that V j�1− q� xj� =
V j�1� xj − sj�q�� for all q, and sjq�0� = V jp�1� xj�/V jx �1� xj� = 1/bj�x�. Now
d
dq
V 1�1− q� x1 +∑I

j=2 s
j�q���q=0 yields −V 1

p �1� xj�+ V 1
x �1� xj�

∑I
j=2 s

j
q�0� =

−V 1
x �1� xj�� 1

b1�x� −
∑I
j=2

1
bj�x� �. Observe that since bj�x� = b1�x� for all j,

then this expression is strictly positive, unless I = 2. This implies that
bargainer 1 can successfully offer sj�q� to each j simultaneously, for small
enough probability of breakdown q, if I > 2.
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Postulats et Axiomes de l’École Américaine,” Econometrica 21, 503–546.

Aumann R., and Kurz, M. (1977). “Power and Taxes,” Econometrica 45, 1137–1161.
Camerer, C. (1995). “Individual Decision Making,” in The Handbook of Experimental Eco-
nomics (J. H. Kagel and A. E. Roth, Eds.), Princeton, NJ: Princeton University Press.

Chew, S. H. (1983). “A Generalization of the Quasilinear Mean with Appliations to the
Measurement of Income Inequality and Decision Theory Resolving the Allias Paradox,”
Econometrica 51, 1061–1092.

Chew, S. H., Karni, E., and Safra, Z. (1987). “Risk Aversion in the Theory of Expected Utility
with Rank Dependent Probabilities,” J. Econ. Theory 42, 370–381.

Cubitt, R. P., Starmer, C., and Sugden, R. (1998). “Dynamic Choice and the Common Ratio
Effect: An Experimental Investigation,” Econ. J. 108, 1362–1380.

Grant, S., and Kajii, A. (1994). “Bargaining, Boldness and Nash Outcomes,” University of
Pennsylvania CARESS Working Paper #94-03.

Grant, S., and Kajii, A. (1995). “A Cardinal Characterization of the Rubinstein–Safra–
Thomson Axiomatic Bargaining Theory,” Econometrica 63, 1241–1249.



bargaining and boldness 51

Gul, F. (1991). “A Theory of Disappointment Aversion,” Econometrica 59, 667–686.
Hanany, E., and Safra, Z. (2000). “Reformulation of the Bargaining Problem with Induced
Utilities,” J. Econ. Theory 90, 254–276.

Houba H., Tieman, X., and Brinksma, R. (1998). “The Nash Bargaining Solution for Decision
Weight Utility Functions,” Econ. Letters 60, 41–48.

Kahneman D., and Tversky, A. (1979). “Prospect Theory: An Analysis of Decision under
Risk,” Econometrica 47, 263–291.

Karni, E., and Safra, Z. (1989). “Ascending Bid Auctions with Behaviorally Consistent Bid-
ders,” Ann. Oper. Res. 19, 435–446.

Machina, M. J. (1987). “Choice Under Uncertainty: Problems Solved and Unsolved,” J. Econ.
Perspect. 1, 121–154.

Machina, M. J. (1989). “Dynamic Consistency and Non-Expected Utility Models of Choice
Under Uncertainty,” J. Econ. Lit. 27, 1622–1668.

Merlo, A., and Wilson, C. (1995). “A Stochastic Model of Sequential Bargaining with Complete
Information,” Econometrica 63, 371–399.

Milnor, J. W. (1965). Topology from the Differentiable Viewpoint. Charlottesville, VA: The
University Press of Virginia.

Nash, J. F. (1950). “The Bargaining Problem,” Econometrica 18, 155–162.
Nash, J. F. (1953). “Two-Person Cooperative Games,” Econometrica 21, 128–140.
Osborne, M. J., and Rubinstein, A. (1990). Bargaining and Markets. San Diego: Academic
Press.

Osborne, M. J., and Rubinstein, A. (1994). A Course in Game Theory. Cambridge, MA: MIT
Press.

Puppe, C. (1991). Distorted Probabilities and Choice under Risk. New York, Springer-Verlag.
Quiggen, J. (1982). “A Theory of “Anticipated” Utility,” J. Econ. Behavior Organ. 3, 323–343.
Rubinstein, A., Safra, Z., and Thomson, W. (1992). “On the Interpretation of the Nash Bar-
gaining Solution and its Extension to Non-Expected Utility Preferences,” Econometrica 60,
1171–1186.

Safra, Z., and Zilcha, I. (1993). “Bargaining Solutions without the Expected Utility Hypothe-
sis,” Games Econ. Behavior 5, 288–306.

Segal, U. (1987). “The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach,”
Int. Econ. Rev. 28, 1987, 175–201.

Segal, U. (1990). “Two-Stage Lotteries without the Reduction Axiom,” Econometrica 58,
349–377.

Sutton, J. (1986). “Non-Cooperative Bargaining Theory: An Introduction,” Rev. Econ. Stud.
53, 709–724.

Valenciano, F., and Zarzuelo, J. M. (1994). “On the Interpretation of Nonsymmetric Bar-
gaining Solutions and Their Extension to Nonexpected Utility Preferences,” Games Econ.
Behavior 7, 461–472.

Yaari, M. E. (1987). “The Dual Theory of Choice under Risk,” Econometrica 55, 95–115.
Zeuthen, F. (1930). Problems of Monopoly and Economic Welfare. London, Routledge and
Kegan Paul.

Zwick, R., Rapoport, A., and Howard, J. G. (1992). “Two-Person Bargaining Behaviour with
Exogenous Breakdown,” Theory Decision 32, 241–268.


	1.INTRODUCTION
	2.BASIC SETUP
	3.THE BARGAINING GAME
	FIG.1.

	4.BOLDNESS
	5.THE LIMIT RESULT
	6.DISCUSSION
	FIG.2.

	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

