A Cardinal Characterization of the Rubinstein-Safra-Thomson Axiomatic
Bargaining Theory

Simon Grant; Atsushi Kajii

Econometrica, Vol. 63, No. 5. (Sep., 1995), pp. 1241-1249.

Stable URL:
http://links jstor.org/sici?sici=0012-9682%28199509%2963%3 A5%3C1241%3AACCOTR%3E2.0.CO%3B2-A

Econometrica is currently published by The Econometric Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/econosoc.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Apr 27 12:58:11 2006



Econometrica, Vol. 63, No. 5 (September, 1995), 1241-1249

A CARDINAL CHARACTERIZATION OF THE
RUBINSTEIN-SAFRA-THOMSON
AXIOMATIC BARGAINING THEORY

By SIMON GRANT AND ATSUSHI Kay!

1. INTRODUCTION

IN A RECENT PAPER Rubinstein, Safra, and Thomson? (hereafter, RST) have provided an
interesting re-examination of the widely applied Nash solution for a two-person bargain-
ing problem. They recast the usual Nash bargaining problem into a more “natural”
setting of feasible alternatives with a disagreement outcome. The two players are then
described by their risk preferences defined on the set of lotteries over the alternatives and
the disagreement outcome. This enables them to define an ordinal Nash solution in
terms of the agents’ risk preferences. Essentially their ordinal solution is an outcome that
is “immune” against possible objections.

Freeing the definition of the Nash solution from “utility” naturally led RST to
extending its scope to non-expected utility preferences. We contend, however, that the
family of non-expected utility preferences considered by RST is unduly restrictive. The
assumptions imposed on the risk preferences by RST essentially exclude any members of
the Rank Dependent Expected Utility (RDEU) and betweenness families that can
accommodate the very choice paradoxes that stimulated the development of non-ex-
pected utility theory.®> As these are two of the most extensively analyzed and widely
applied non-expected utility models in the literature, this seems to cast doubt on how
broad an extension to non-expected utility preferences the RST approach affords.*

We demonstrate, however, that RST’s analysis can be modified so that their conclusion
is valid in a wider class of preferences that can include examples of RDEU preferences.
This class consists of preferences that admit what we term a disagreement linear represen-
tation. This essentially means that for the set of elementary lotteries, lotteries whose
support consists of at most one outcome and the disagreement outcome, there exists an
expected utility representation of the preference relation. More significantly, in accom-
plishing this extension we develop a cardinal characterization of the ordinal Nash solution,
which enables us to reduce RST’s analysis to a straightforward corollary of Nash’s
original theorem and provides us an operationally simple method with which to compute
the ordinal Nash solution.

Despite our success in characterizing a broader class of preferences, we highlight that
preferences from this class cannot accommodate the variant of the Allais Paradox
referred to as the common ratio paradox. Moreover, we give a simple example of
preferences which can accommodate this paradox and yet for which an ordinal Nash

! Atsushi Kajii gratefully acknowledges financial support from the University of Pennsylvania
Research Foundation and the CORE fellowship. The authors wish to thank J. Eichberger, A.
Rubinstein, Z. Safra, L. Zhou, two anonymous referees and the editor for their helpful comments
and suggestions. We are particularly grateful to A. Rubinstein, Z. Safra, and L. Zhou for pointing
out an error in an earlier version. Any remaining errors or omissions are of course the sole
resgonsibility of the authors.

Rubinstein-Safra-Thomson (1992).

® For a detailed discussion of the RDEU model, see Quiggin (1992); for the betweenness model,
see Chew (1989).

Valenciano and Zarzuelo (1994) provide the ordinal analog of the nonsymmetric bargaining
solution. For their extension to non-expected utility, they accept without comment the assumptions
on risk preferences imposed by RST, except to note that all of these assumptions are guaranteed for
expected utility.
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solution does not, in general, exist. We thus think it is an interesting open question if one
can characterize a family of risk preferences that can accommodate at least the most
widely observed violations of expected utility theory and for which the ordinal Nash
solution (or perhaps some suitably defined variant) is well-defined.’

2. THE MODEL AND RESULTS

Following RST, we consider a two agent bargaining problem as follows. The set of
alternatives is denoted by X. X is assumed to be a nonempty, compact metrizable space.
There is a given, designated disagreement outcome, denoted by D. The set X U {D} is
endowed with the natural topology where the point D is regarded as a discrete point, and
we consider the associated Borel o-field. We denote the set of lotteries (probability
measures) over X and XU{D} by A(X) and Z(X U {D)}), respectively, which are
endowed with the weak topology. A(X) and £(XU{D}) are separable metrizable
spaces. Let 8, denote a (degenerate) lottery whose support consists of a single outcome
x € XU {D}. Without loss of generality, we can write a lottery over X U {D} as pL +
(1—-p)8p, where L is a lottery whose support is contained in X and p €[0, 1], and we
shall denote it by pL for simplicity. Abusing notation, we shall often write px instead of
pé, for any outcome x € X. We shall call a lottery of the form px an elementary lottery.
The set of all elementary lotteries is denoted by .Z.

There are two agents, 1, 2. Each agent i, i = 1, 2, has preferences >; over £(X U {D}).
We assume that each >, is a complete, reflexive, continuous pre-order, and outcome D
is least desirable, that is, pL >;D for any p €(0, 1] and L € A(X). Moreover, there
exists at least one outcome x €X, such that x>;D, for both i. The set X and the
disagreement outcome D are kept fixed, so a bargaining problem is naturally identified
with (>, >,). In order to ease exposition and avoid uninteresting multiplicity of
bargaining outcomes that are equivalent in terms of the agents’ preferences, again
following RST, we restrict the set of bargaining problems considered to ones that satisfy
the following assumption.

SIMPLIFYING ASSUMPTION: x ~; y for both i implies x =y. For each i there exists an
alternative b;, such that b, ~; D and b, >; x for all x # b;.

We shall consider the following additional assumptions on preferences and additional
restriction to the set of bargaining problems:

DOM (First Order Stochastic Dominance): Ifx>; yand 1>p>q=>0, then px +ry >,
gx +ry (where px +ry is the lottery which gives x, y, and D with probabilities p, r and
1 —p — r accordingly).

WH (Weak Homogeneity): Preferences > satisfy WH provided for any x, y €X:
px>=y < Bpx > By for all B€ (0, 1]

C-ConvexiTy (Cardinal Convexity): A bargaining problem, (>, >,), is C-Convex
provided for any x, y in X, x #Yy, there is an outcome z in X such that for each i: pb; ~; x
and gb;~; y = 3(p + q)b; <z.

2

°In a companion paper (Grant-Kajii (1994)) we provide a geometric characterization of a
multi-agent extension of the RST ordinal Nash solution that enables us to define a class of
preference relations that are compatible with the well known experimental violations of expected
utility and for which the ordinal Nash solution is well defined.
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The origin of the term “Cardinal” will become clear later. Note that C-Convexity is a
joint hypothesis on preferences and the set X. It can be seen that X is connected if a
problem is C-Convex; in particular, C-Convexity cannot be satisfied if X is finite.

The following is a restatement of RST’s definition of the Ordinal Nash Outcome, and
the reader is referred to RST for its interpretation. By convention, we refer to the agents
by i and j.

DEFINITION 1: Let x €X. We say that agent i can appeal against x, if there is an
outcome y €X and p €[0, 1] such that py>; x and px <;y. A Nash outcome is an
outcome x* € X against which neither agent can appeal.

We shall develop a cardinal characterization of the Nash outcome. First observe that
the Nash outcome only involves risk preferences over elementary lotteries. So, let us
consider risk preference relations which have an expected utility representation over the
set of elementary lotteries.

DEFINITION 2: Preferences >; are disagreement linear (DL) if there is a continuous
function ¥; from X to R, such that for any x, y €X:

1 px=;qy < Vi(x)p 2V, (y)q.
We call V; a DL representation.

Since 0x ~; D, we can set V(D) = 0 by convention. Obviously, expected utility prefer-
ences are DL. More generally, we have the following lemma.

LEMMA 1: Suppose >, satisfies DOM. Then preferences > ; satisfy WH if and only if they
are DL. Moreover, DL representation is unique up to positive scalar multiplication.

PrOOF: Clearly, if preferences are DL, then they satisfy WH. Suppose WH holds.
Recall that there is a best outcome b;. For each px €%, we can find a unique number
v(px) €[0,1] such that px ~ y(px)b;, by DOM and (mixture) continuity. y is continuous
and x ~ y(1x)b, by construction. Then by WH, px ~ py(1x)b;, hence y(px) = py(1x) by
the uniqueness of . Set V(x) = y(1x) for every x € X, and it is straightforward to check
that V; is a DL representation. If ¥/ is also a DL representation, then V;(x) = V,(x)V;/(b,)
must hold for any x, since p = Vy(x) = V/(b)p = V/(x). Q.E.D.

For a bargaining problem that admits DL representations for both agents’ preferences,
we have a simple cardinal characterization of the Nash outcome as follows:

LEMMA 2: Suppose agents preferences are DL with DL representation V,, i =1, 2. Then
x* €X is a Nash outcome if and only if x* is a solution to the following maximization
problem:

) max Vi(x)-Vy(x)

PROOF: Suppose x* is a solution to (2). Suppose there is an outcome y €X and
p<€(©, 1] such that py>,x* and px* <;y. That is, we have V(y)p > V{(x*) and
V(x*)p < V(y). Multiplying these two inequalities together we have Vi(y)V,(y)p >
Vll(x*)Vz(x )p, a contradiction. So, x* is a Nash outcome.

Conversely, if x* is not a solution to (2), one can find y and p €(0, 1) such that
W, (»)/Vo(x*) > p > (Vi(x*)/V(y)). Then Vy(y)p > Vi(x*) and V,(x*)p < V,(y), which
by definition implies that py >; x* and px* <, y; that is, agent 1 can appeal against x*
with y. Q.E.D.
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Although we agree with RST that the product of “utilities” is difficult to interpret,
Lemma 2 does provide a useful operational method for determining the ordinal Nash
solution and highlights how their ordinal definition is a natural preference based analog
of the original “utility” based definition.

DEFINITION 3: Let (>;, >,) be a bargaining problem where each >, has a DL
representation V;. The cardinal bargaining problem induced by (V,, V,) is the set given by
8 ={(uy, u):Ix € X, u; < V,(x) for both i}.

An induced cardinal bargaining problem S is a comprehensive set by construction and
it is closed since X is compact. To complete the analogy with Nash’s original cardinal
approach we also require the induced bargaining problem S to be convex.

LEMMA 3: If C-Convexity holds for the bargaining problem (>, >,) and each
>, satisfies WH and DOM, then S is convex.

PROOF: Suppose § is not convex. Then there are two outcomes x and y in X such
that there is no z €X such that (V(2), V,(2)) lies northeast of the line segment that
connects (Vy(x), V,(x)) and (V(y), V,(y)). W.Lo.g., we can assume that for each i, V; has
the canonical form constructed as in the proof of Lemma 1. For each i, let p; and g; be
probabilities defined by p;b,~; y, i, p,=V{(x) and g;=V/(y) by construction. By
C-Convexity, there exists z € X such that z >,3(p; + g,)b; for i = 1, 2. Since V{(2)b; ~; z,
it follows from DOM that V(z) > 3(p; +g,) = 3Vi(x) + 3¥,(y) for both i, a contradic-
tion. Q.E.D.

Our first result which improves upon RST’s Proposition 2(a) (1992, p. 1180) follows as
an immediate consequence of Lemmas 2 and 3, the simplifying assumption, and the
compactness of X:

PROPOSITION 1: Let (>,, >,) be a bargaining problem where both >; satisfy DOM and
WH. Then a Nash outcome exists. If in addition (>,, >,) is C-Convex, then the Nash
outcome is unique.

Our second result is a characterization of the Nash solution: Let 2 be a collection of
preferences over (X U {D}) which satisfy the basic assumptions and DOM and WH.
Let % C 2 X% be the set of bargaining problems (>,, >,) for which the Simplifying
Assumption and C-Convexity hold. Let %' be any subset of %. Then %’ can be seen as
a set of bargaining problems. An ordinal bargaining solution defined on %' is a function
F: #' - X. The Ordinal Nash Solution, or simply the Nash Solution, is a function that
assigns an ordinal Nash outcome to each bargaining problem in % X £. We denote by
A(>4, >,) the Nash outcome of (>,, >,); then .7 is a well-defined ordinal bargaining
solution by Proposition 1.

(>4, >,) is said to be symmetric if there exists a function ¢: X U {D} > X U {D}
which satisfies y = ¢(x) & x = ¢(y) and D = ¢(D) such that for all elementary lotteries
px and qy, px >,qy < pd(x) >=;qp(y). ¢ is called a symmetry function.

Following RST, we shall consider the following preference based analogs of Nash’s
axioms for an ordinal bargaining solution F on %'.

PAR: Forany (>, >,) € &' andx =F(>,, >,), there isnoy € X such thaty =, x for
both i.
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SYM: If (>,, >,) is a symmetric problem with a symmetry function ¢, then F(>,, >,)
is a fixed point of the symmetry function ¢.

MA: Let x* =F(>,, >,). Suppose (>, >5) € B', i=1, 2, satisfy: (i) > agree with
>, on deterministic outcomes; (ii) x >;x* and px ~;x* implies x* >, px; (iii) x* >;x and
x ~;qx* implies x <';qx*. Then x* = F(>', >%).

The following extends RST’s Proposition 2(c) (1992, p. 1180):

PROPOSITION 2: Let &' C & and suppose &' contains all expected utility preferences,
and at least one symmetric problem.® Then the ordinal Nash solution is the unique bargaining
solution defined on &' which satisfies PAR, SYM, and 1IA.

It is straightforward to check that the Nash Solution .#" satisfies PAR, SYM, and ITA
on any &£'. Uniqueness follows from Lemma 2 by a straightforward application of the
well-known, classical theorem of Nash (1950) (see Appendix).

3. COMPARISIONS WITH RST’S RESULTS AND SOME REMARKS

For risk preferences, RST assumed, in addition to DOM, the following:
H (Homogeneity): If x >;L, then ax>,aL and ifx ~; L, then ax ~; aL.
Q (Quasi-Concavity): If L' >; L, then for any a €[0,1], aL' + (1 —a)L >; L.

CCE (Conditional Certainty Equivalence): If x ~; L', then ax+ (1 — a)z >;
aL' + (1 — a)z for any z such that z >y in the support of L'.

RST also show that Q and CCE can be replaced with the following pair of assump-
tions:

WQ: IfL' >, x, then forany a [0, 1], L' + (1 — a)x >; x.
CCE*: Ifx>;L’, then ax+ (1 — a)L >;aL’ + (1 — a)L for any lottery L.

Instead of C-Convexity, RST required the following alternative notion of convexity to
hold for bargaining problems.

CONVEXITY: A bargaining problem (>, >,) is convex if for any x, y in X, there exists an
outcome z in X such that z > ;38, + 38, for both i.

H, as RST readily admits, is a very strong axiom that states that risk preferences are
homothetic with respect to mixtures with the disagreement outcome D. That is, indiffer-
ence surfaces in the probability simplex are homothetic with respect to the D vertex. Our
assumption WH is strictly weaker than H, since it only restricts preferences of lotteries
that lie along the “edges” connecting the D vertex to any other vertex.

Q (quasi-concavity) and its weaker version WQ are not necessarily any more plausible
than quasiconvexity. In fact some authors have argued that quasiconcave preferences are
vulnerable to Dutch books.” Moreover, for one well-known class of non-expected utility

® The existence of a symmetric problem will be trivially satisfied if X is a nonempty, compact and
convex subject of R} and 4’ contains all expected utility preferences.
Green (1987), for instance.
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risk preferences, rank dependent expected utility, quasiconcavity is incompatible with
aversion to mean preserving spreads.® RST defend Q by noting that they can allow
preferences to be both quasi-concave and quasi-convex (that is, the indifference surfaces
in the simplex are “planar”). But notice that, in conjunction with H, this implies that the
preferences restricted to lotteries over any triple of outcomes that includes the disagree-
ment outcome must be representable by an expected utility functional. That is, the
indifference curves in the simplex are linear and parallel. We simply note that a wide
variety of the experimentally observed violations of expected utility theory have involved
choices over three outcomes, where the worst outcome might quite reasonably be
interpreted as the disagreement outcome in a bargaining context.

CCE is defended by RST on the grounds that it is satisfied whenever preferences
satisfy “fanning out” (Machina’s (1982) hypothesis II) but again it seems restrictive to
rule out on a priori reasoning “fanning in,” particularly since it too has received support
in reported experimental evidence.’

To sum up, Q, WQ, CCE, and CCE* tend to exclude interesting and popular classes of
non-expected utility preferences despite RST’s motivation. On the other hand, none of
these uncomfortable assumptions is required for any of our results.

It is not difficult to see that in general, C-Convexity neither implies nor is implied by
Convexity. However, under H and Q, a Convex bargaining problem is
C-Convex. This follows immediately from the property that pb,~; x and gb,~;y
implies 38, + 38, >;3(p +q)b,, under H and Q. To see this, say x <, y. Then by
H, x~,ry where r=p/q<1, and so (r/(1+r))s,+ A/ +r)Xrs, + (1 —r)D)
=538, +38,]>,7v where s=Qr/(r+1)) by Q. On the other hand, ry ~; (rq)b;
=s((p+q) /y2)b,~ by H, so the property holds.

In conclusion, our assumptions are implied by RST’s assumptions. To show that
Propositions 1 and 2 are strict extensions of their counterparts in RST, we shall give an
example of a bargaining problem with RDEU preferences, which satisfies all of our
assumptions but none of the four RST assumptions Q, WQ, CCE, and CCE*.

ExXampLE 1: Let X = {(x,, x,) €R3|x, +x, < 1} and D = (0, 0). Agent i’s preferences
only depend on his share, x;, of the “pie” over which the agents are bargaining. Consider
preferences of agent i represented by the following RDEU functional:

3) UL = [ (Gl dz
z=0

where G; denotes the decumulative distribution function of i’s share of the pie induced
by L and ;> 1for i= 1,21

It is straightforward to see that for this bargaining problem both preference relations
satisfy H (and hence WH) and V{(x)=x}/* is a DL representation of
>;. Aversion to risk (in the Rothschild-Stiglitz sense) implies and is implied by «; > 1
for i=1, 2.'' So, the problem is Convex. It is also C-Convex: to see this, note
that U*(pb;) = p* and that p* =x, and q% =y, implies z=
3%+ 3y, 2 [3p + 391% = U*(3p + 1q1b)). From (3), it follows that a;> 1 implies that
for any L, L' with U*(L)=U*(L"), U*(pL + (1 -p)L") <pU*(L) + (1 — p)U*(L";
that is, U is quasi-convex in probabilities. From this, it is easy to see that Q is not
satisfied, and that CCE also fails to hold.

¥ See Theorem 1 of Chew et al. (1987, p. 374).

® See, for instance, Camerer (1989), Starmer (1992).

"% This functional is an example of the “dual model” axiomatized by Yaari (1987) where the
decumulative distribution function for a random variable X is defined as

Gi(x) =Pr(X>2z).
'See Chew et al. (1987, Theorem 1, p. 374).
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Applying Lemma 2, the ordinal Nash outcome corresponds to the split of the dollar
that solves

max z!/%-(1-2z)".
zel0,1]

Let us point out that the risk preferences considered in Example 1 do not accord a
special status to the disagreement outcome. Rather the preference between two lotteries
is maintained when they are both mixed with any outcome that is worse than any
outcome in the supports of those two lotteries. Hence for this type of preference relation,
our results could be readily generalized to bargaining problems where the set of
alternatives and the disagreement outcome varied. This appears to be an attractive
feature since the disagreement outcome (outside option) may well be endogenously
determined in some applications.

Although WH is weaker than H, it is nevertheless a substitution axiom similar in
nature to the independence axiom. In particular, WH is not consistent with the common
ratio effect. Let x and y be two outcomes corresponding to $3000 and $4000 respectively,
and let D be the outcome $0.

PrOBLEM 1: Choose either x or 0.8y.
PrOBLEM 2: Choose either 0.25x or 0.2y.

Many studies have shown a systematic tendency for subjects when faced with such
problems to express a preference for x over 0.8y in the first problem and for 0.2y over
0.25x in the second problem constituting a direct violation of WH."

Without WH, however, the existence of an ordinal Nash solution is more delicate. We
illustrate this point in the following example where the risk preferences can accommo-
date violations such as the common ratio effect.

EXAMPLE 2: Consider the setup as in Example 1, except that preferences are repre-
sented by

@ U= [1-1-G)"dz

z=0
where a; > 0. The problem can be shown to be C-Convex if @; <1 for each i =1, 2. But
note that U(px)=x,1—(1—p)*) for elementary lotteries, indicating that WH is
violated. Moreover, if a; <1, then it is not difficult to see that the preferences are
consistent with the common ratio effect.’

However, except for the case where a; = a,, the ordinal Nash solution does not exist
for this problem. Obviously, regardless of the particular values of @; and aj, the split ,
1) and (1, 0) is not a Nash outcome, so let x € (0, 1). If a; > a, it is straightforward to
verify that the function y[1 — (1 —p)*]is increasing with respect to y at y =x subject to
the constraint (1 —y) = (1 —x)[1 — (1 — p)*2], so player 1 is able to successfully appeal
against any split (x, 1 —x) with x < 1. Intuitively, although both players are risk averse, if
a; > a,, then player 1 is relatively less risk averse for small probabiity risks around any x
and is thus able to obtain a concession from player 2 indefinitely. Similarly, if a,> a;,
then player 2 can successfully appeal against any split (x, 1 —x). Only in the case where
a, = a, will there exist an ordinal Nash solution, which corresponds to the split (1/2,
1/2) that maximizes the expression x*(1 —x*).

12 g ahneman and Tversky (1979), for instance.
13 Grant-Kajii (1993) discuss this type of preferences and show that concavity of u; and a; <1 are
in fact necessary and sufficient for an individual to be risk averse.
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APPENDIX

PROOF OF PROPOSITION 2: Let us say (uf, u3) €S is a cardinal Nash outcome of S if u}-u} >
uy-u, for any (u,, u,) €S. Let v(S) be the cardinal Nash outcome of S.

NasH’S THEOREM: Let . be a collection of convex, comfrehensiue subsets of R% such that
Sy={s€R%:s; +s,<1} €% and AS, € for any A€ R, Let .- 2%\ be a set valued
function such that f(S) C S for all S €. Suppose the following properties hold:** (a) f(AS) = Af(S) for
any A€R% ;5 (b) f(S)) =13, D)) () if f(S)) €S and S < S}, then f(S) =£(S,). Then f(S) = {v(S)} for
all S €%

Let & be the set of all cardinal bargaining problems induced by some (>, >,) €%’. Since the
DL representation is unique up to positive scalar multiplication, the set of all cardinal bargaining
problems corresponding to a bargaining problem (>, >,) has the following simple form: let (V,
V,) be any DL representations of (>, >,) and let S be the induced cardinal problem. Then the set
of all cardinal bargaining problems corresponding to (>, >,) is {aS:a €R?%,}.

Pick a symmetric problem, (>, >,) €', with associated symmetry function ¢. Since (>;, >,)
is C-Convex, w.Lo.g., let (¥}, V,) be its DL representation with range(V;) =[0, 1], and let S be the
induced cardinal problem. For each x€X, set U(x)=a(x)V(x), where a(x)=inf{a>0:
/a)V(x), (1/a)V,(x)) €S). Let (>, >}) be the bargaining problem with EU preferences
whose VNM utility functions are (U;, U,). By construction, (>, >3) is also a symmetric problem
with symmetry function ¢ and it induces S;. This in particular shows that . satisfies the
requirements in Nash’s Theorem.

Let #' c# and let F be any ordinal bargaining problem defined on %’ that satisfies PAR,

SYM, and IIA. Define a set valued function f:%— 29‘2\® by the rule:
F(8) ={("(x), V5(x)): A(>,, >,) with x =F(>, >,) that induces S with V}}.

Note that it is possible that two ordinal bargaining problems, (>;, >,) with DL representation
(Vy, V,) and (>, >%) with (V], V3), induce the same cardinal bargaining problem S. But it is not
necessarily true that (Vy(x), ¥,(x)) = (V{(x"), V3(x")), where x=F(>;, »,) and x' = F(>, »}).
So in general f(S) is a nontrivial, set valued function even if F is singleton valued. But if
£(8) = {v(8)}, then by Lemma 2, F(>,, >,) =A#(>,, >,) must follow whenever (>;, >,) induces
S

Therefore, Proposition 2 will be established if we can show that f satisfies (a), (b), and (c) in
Nash’s Theorem. By construction and by the essential uniqueness of DL rePresentation, (a) is clearly
satisfied. To see that (b) is satisfied, consider the bargaining problem (>, >’) constructed above
that has EU representations (U;, U,) and induces S;. Let x* = F((>', >,)). By SYM, x* = ¢(x*)
which implies that U;(x*) = U,(x*). By PAR, U;(x*) + U,(x*) = 1. So, £(S;) ={(%, D}.

To see that (c) is satisfied, pick any problem (>;, >,) that induces a cardinal bargaining problem
S €% such that (3, ;) €S <S,. Let V; be the corresponding DL representations and x* be a
corresponding outcome to (3, 3) (which is uniquely determined by the simplifying assumptions).
Since f(S;) ={(3, 3)}, it is sufficient to show that F((>;, >,))=x* by IIA. For each s €S, let
7[s]=suplt > 0:ts < §;}. Let (uy(x), u,(x)) = 7[(V(x), V,(xNI(Vy(x), V5(x)). Let > be EU prefer-
ences defined by u;. By the simplifying assumption, >; and >; induce the same ordering over X.

4 For any set A, BER? and a vector r €R?, “A <B” means “Va€A, A3b< B, a<b” and
A ={r,a,, r,a,)(a,, a,) €A}).
(a) is scale independence, (b) is symmetry, and (c) is independence from irrelevant alternatives.
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Since § <S;, u;(x) = V(x) for all x, and u,(x) =V(x) = 3. Since (>, >}) induces S;, we have
F((=', >,))=x* Then conditions (ii) and (iii) in the definition of IIA are satisfied at x* for (>,
>,), (=, =%). To see this, recall that px ~; x* if and only if pV,(x) = § by construction. So, for
each i, (ii) is equivalent to saying that u,(x) > V;(x) for all x >,x*, x € X. Similarly, (iii) is equivalent
to u,(x) = V{x) for all x>;x* x€X. So, by IIA, we obtain x*=F((>), >3)=F((>,,

>5)).
Consequently, F(S) = f(S;), as we desired. Q.E.D.
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